Weill Cornell Medical College The Rockefeller University Memorial Sloan-Kettering Cancer Center

Apply Online Application Due: December 1, 2013

Publications

Student publications at the forefront of chemical biology

TPCB students have an exceptional publication record, averaging over 5 papers per PhD graduate! This prolific group has published over 600 scientific papers since 2003, in high impact journals including Nature, Science, Cell, Journal of the American Chemical Society, ACS Chemical Biology, Biochemistry, Cell Chemical Biology, Nature Chemical Biology, and Proceedings of the National Academy of Sciences. Because of our highly interactive research environment, many of these papers involve multidisciplinary collaborations between TPCB laboratories as well as with other researchers on the Tri-Institutional campuses. In total, TPCB labs have published over 200 papers together!

Name Publications
Banerjee, Anoosha Small, G. I.; Fedorova, O.; Olinares, P. D. B.; Chandanani, J.; Banerjee, A.; Choi, Y. J.; Molina, H.; Chait, B. T.; Darst, S. A.; Campbell, E. A. Structural and functional insights into the enzymatic plasticity of the SARS-CoV-2 NiRAN domain. Mol. Cell 2023, 83, 3921-3930.e7. DOI: 10.1016/j.molcel.2023.10.001 PMID: 37890482
Grimes, S. L.; Choi, Y. J.; Banerjee, A.; Small, G.; Anderson-Daniels, J.; Gribble, J.; Pruijssers, A. J.; Agostini, M. L.; Abu-Shmais, A.; Lu, X.; Darst, S. A.; Campbell, E.; Denison, M. R. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. mBio 2023, 14, e0106023. DOI: 10.1128/mbio.01060-23 PMID: 37338298
Banerjee, Sourabh Menon, I.; Huber, T.; Sanyal, S.; Banerjee, S.; Barré, P.; Canis, S.; Warren, J. D.; Hwa, J.; Sakmar, T. P.; Menon, A. K. Opsin is a phospholipid flippase. Curr. Biol. 2011, 21, 149–153. DOI: 10.1016/j.cub.2010.12.031 PMID: 21236677
Knepp, A. M.; Grunbeck, A.; Banerjee, S.; Sakmar, T. P.; Huber, T. Direct measurement of thermal stability of expressed CCR5 and stabilization by small molecule ligands. Biochemistry 2011, 50, 502–511. DOI: 10.1021/bi101059w PMID: 21155586
Zaitseva, E.; Saavedra, M.; Banerjee, S.; Sakmar, T. P.; Vogel, R. SEIRA spectroscopy on a membrane receptor monolayer using lipoprotein particles as carriers. Biophys. J. 2010, 99, 2327–2335. DOI: 10.1016/j.bpj.2010.06.054 PMID: 20923668
Banerjee, S.; Huber, T.; Sakmar, T. P. Rapid incorporation of functional rhodopsin into nanoscale apolipoprotein bound bilayer (NABB) particles. J. Mol. Biol. 2008, 377, 1067–1081. DOI: 10.1016/j.jmb.2008.01.066 PMID: 18313692
Baca, Christian Baca, C. F.†; Majumder, P.†; Hickling, J. H.; Ye, L.; Teplova, M.; Brady, S. F.; Patel, D. J.; Marraffini, L. A. The CRISPR-associated adenosine deaminase Cad1 converts ATP to ITP to provide antiviral immunity. Cell 2024, 187, 7183–7195. DOI: 10.1016/j.cell.2024.10.002 PMID: 39471810
Hossain, A. A.; Pigli, Y. Z.; Baca, C. F.; Heissel, S.; Thomas, A.; Libis, V. K.; Burian, J.; Chappie, J. S.; Brady, S. F.; Rice, P. A.; Marraffini, L. A. DNA glycosylases provide antiviral defence in prokaryotes. Nature 2024, 629, 410–416. DOI: 10.1038/s41586-024-07329-9 PMID: 38632404
Baca, C. F.; Yu, Y.; Rostøl, J. T.; Majumder, P.; Patel, D. J.; Marraffini, L. A. The CRISPR effector Cam1 mediates membrane depolarization for phage defence. Nature 2024, 625, 797–804. DOI: 10.1038/s41586-023-06902-y PMID: 38200316
Banik, Jacob Charlop-Powers, Z.; Banik, J. J.; Owen, J. G.; Craig, J. W.; Brady, S. F. Selective enrichment of environmental DNA libraries for genes encoding nonribosomal peptides and polyketides by phosphopantetheine transferase-dependent complementation of siderophore biosynthesis. ACS Chem. Biol. 2013, 8, 138–143. DOI: 10.1021/cb3004918 PMID: 23072412
Bick, M. J.; Banik, J. J.; Darst, S. A.; Brady, S. F. The 2.7 Å resolution structure of the glycopeptide sulfotransferase Teg14. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 1278–1286. DOI: 10.1107/S0907444910036681 PMID: 21123867
Banik, J. J.; Craig, J. W.; Calle, P. Y.; Brady, S. F. Tailoring enzyme-rich environmental DNA clones: a source of enzymes for generating libraries of unnatural natural products. J. Am. Chem. Soc. 2010, 132, 15661–15670. DOI: 10.1021/ja105825a PMID: 20945895
Banik, J. J.; Brady, S. F. Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr. Opin. Microbiol. 2010, 13, 603–609. DOI: 10.1016/j.mib.2010.08.012 PMID: 20884282
Bick, M. J.; Banik, J. J.; Darst, S. A.; Brady, S. F. Crystal structures of the glycopeptide sulfotransferase Teg12 in a complex with the teicoplanin aglycone. Biochemistry 2010, 49, 4159–4168. DOI: 10.1021/bi100150v PMID: 20361791
Banik, J. J.; Brady, S. F. Cloning and characterization of new glycopeptide gene clusters found in an environmental DNA megalibrary. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 17273–17277. DOI: 10.1073/pnas.0807564105 PMID: 18987322
Bauer, Renato Wenderski, T. A.; Stratton, C. F.; Bauer, R. A.; Kopp, F.; Tan, D. S. Principal component analysis as a tool for library design: a case study investigating natural products, brand-name drugs, natural product-like libraries, and drug-like libraries. Methods Mol. Biol. 2015, 1263, 225–242. DOI: 10.1007/978-1-4939-2269-7_18 PMID: 25618349
Bauer, R. A.; Wenderski, T. A.; Tan, D. S. Biomimetic diversity-oriented synthesis of benzannulated medium rings via ring expansion. Nat. Chem. Biol. 2012, 9, 21–29. DOI: 10.1038/nchembio.1130 PMID: 23160003
Moura-Letts, G.; DiBlasi, C. M.; Bauer, R. A.; Tan, D. S. Solid-phase synthesis and chemical space analysis of a 190-membered alkaloid/terpenoid-like library. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 6745–6750. DOI: 10.1073/pnas.1015268108 PMID: 21451137
Bauer, R. A.; DiBlasi, C. M.; Tan, D. S. The tert-butylsulfinamide lynchpin in transition-metal-mediated multiscaffold library synthesis. Org. Lett. 2010, 12, 2084–2087. DOI: 10.1021/ol100574y PMID: 20356070
Bauer, R. A.; Wurst, J. M.; Tan, D. S. Expanding the range of ‘druggable’ targets with natural product-based libraries: an academic perspective. Curr. Opin. Chem. Biol. 2010, 14, 308–314. DOI: 10.1016/j.cbpa.2010.02.001 PMID: 20202892
Berman, Adi Kelley, M. E.; Berman, A. Y.; Stirling, D. R.; Cimini, B. A.; Han, Y.; Singh, S.; Carpenter, A. E.; Kapoor, T. M.; Way, G. P. High-content microscopy reveals a morphological signature of bortezomib resistance. eLife 2023, 12, e91362. DOI: 10.7554/eLife.91362 PMID: 37753907
Berman, A. Y.; Wieczorek, M.; Aher, A.; Olinares, P. D. B.; Chait, B. T.; Kapoor, T. M. A nucleotide binding-independent role for γ-tubulin in microtubule capping and cell division. J. Cell. Biol. 2023, 222, e202204102. DOI: 10.1083/jcb.202204102 PMID: 36695784
Blum, Gil Chen, S.; Wiewiora, R. P.; Meng, F.; Babault, N.; Ma, A.; Yu, W.; Qian, K.; Hu, H.; Zou, H.; Wang, J.; Fan, S.; Blum, G.; Pittella-Silva, F.; Beauchamp, K. A.; Tempel, W.; Jiang, H.; Chen, K.; Skene, R. J.; Zheng, Y. G.; Brown, P. J.; Jin, J.; Luo, C.; Chodera, J. D.; Luo, M. The dynamic conformational landscape of the protein methyltransferase SETD8. eLife 2019, 8, e45403. DOI: 10.7554/eLife.45403 PMID: 31081496
Linscott, J. A.; Kapilashrami, K.; Wang, Z.; Senevirathne, C.; Bothwell, I. R.; Blum, G.; Luo, M. Kinetic isotope effects reveal early transition state of protein lysine methyltransferase SET8. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E8369-E8378. DOI: 10.1073/pnas.1609032114 PMID: 27940912
LaFave, L. M.; Béguelin, W.; Koche, R.; Teater, M.; Spitzer, B.; Chramiec, A.; Papalexi, E.; Keller, M. D.; Hricik, T.; Konstantinoff, K.; Micol, J. B.; Durham, B.; Knutson, S. K.; Campbell, J. E.; Blum, G.; Shi, X.; Doud, E. H.; Krivtsov, A. V.; Chung, Y. R.; Khodos, I.; de Stanchina, E.; Ouerfelli, O.; Adusumilli, P. S.; Thomas, P. M.; Kelleher, N. L.; Luo, M.; Keilhack, H.; Abdel-Wahab, O.; Melnick, A.; Armstrong, S. A.; Levine, R. L. Loss of BAP1 function leads to EZH2-dependent transformation. Nat. Med. 2015, 21, 1344–1349. DOI: 10.1038/nm.3947 PMID: 26437366
Blum, G.; Ibáñez, G.; Rao, X.; Shum, D.; Radu, C.; Djaballah, H.; Rice, J. C.; Luo, M. Small-molecule inhibitors of SETD8 with cellular activity. ACS Chem. Biol. 2014, 9, 2471–2478. DOI: 10.1021/cb500515r PMID: 25137013
Guo, H.; Wang, R.; Zheng, W.; Chen, Y.; Blum, G.; Deng, H.; Luo, M. Profiling substrates of protein arginine N-methyltransferase 3 with S-adenosyl-L-methionine analogues. ACS Chem. Biol. 2014, 9, 476–484. DOI: 10.1021/cb4008259 PMID: 24320160
Islam, K.; Chen, Y.; Wu, H.; Bothwell, I. R.; Blum, G. J.; Zeng, H.; Dong, A.; Zheng, W.; Min, J.; Deng, H.; Luo, M. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 16778–16783. DOI: 10.1073/pnas.1216365110 PMID: 24082136
Blum, G.; Bothwell, I. R.; Islam, K.; Luo, M. Profiling protein methylation with cofactor analog containing terminal alkyne functionality. Curr. Protoc. Chem. Biol. 2013, 5, 67–88. DOI: 10.1002/9780470559277.ch120241 PMID: 23788324
Blum, G.; Islam, K.; Luo, M. Bioorthogonal profiling of protein methylation (BPPM) using an azido analog of S-adenosyl-L-methionine. Curr. Protoc. Chem. Biol. 2013, 5, 45–66. DOI: 10.1002/9780470559277.ch120240 PMID: 23667794
Wang, R.; Islam, K.; Liu, Y.; Zheng, W.; Tang, H.; Lailler, N.; Blum, G.; Deng, H.; Luo, M. Profiling genome-wide chromatin methylation with engineered posttranslation apparatus within living cells. J. Am. Chem. Soc. 2013, 135, 1048–1056. DOI: 10.1021/ja309412s PMID: 23244065
Zheng, W.; Ibáñez, G.; Wu, H.; Blum, G.; Zeng, H.; Dong, A.; Li, F.; Hajian, T.; Allali-Hassani, A.; Amaya, M. F.; Siarheyeva, A.; Yu, W.; Brown, P. J.; Schapira, M.; Vedadi, M.; Min, J.; Luo, M. Sinefungin derivatives as inhibitors and structure probes of protein lysine methyltransferase SETD2. J. Am. Chem. Soc. 2012, 134, 18004–18014. DOI: 10.1021/ja307060p PMID: 23043551
Bothwell, I. R.; Islam, K.; Chen, Y.; Zheng, W.; Blum, G.; Deng, H.; Luo, M. Se-adenosyl-L-selenomethionine cofactor analogue as a reporter of protein methylation. J. Am. Chem. Soc. 2012, 134, 14905–14912. DOI: 10.1021/ja304782r PMID: 22917021
Ibanez, G.; Shum, D.; Blum, G.; Bhinder, B.; Radu, C.; Antczak, C.; Luo, M.; Djaballah, H. A high throughput scintillation proximity imaging assay for protein methyltransferases. Comb. Chem. High Throughput Screen. 2012, 15, 359–371. DOI: 10.2174/138620712800194468 PMID: 22256970
Wang, R.; Ibáñez, G.; Islam, K.; Zheng, W.; Blum, G.; Sengelaub, C.; Luo, M. Formulating a fluorogenic assay to evaluate S-adenosyl-L-methionine analogues as protein methyltransferase cofactors. Mol. Biosyst. 2011, 7, 2970–2981. DOI: 10.1039/c1mb05230f PMID: 21866297
Bose, Neelanjan Shinoda, K.; Choe, A.; Hirahara, K.; Kiuchi, M.; Kokubo, K.; Ichikawa, T.; Hoki, J. S.; Suzuki, A. S.; Bose, N.; Appleton, J. A.; Aroian, R. V.; Schroeder, F. C.; Sternberg, P. W.; Nakayama, T. Nematode ascarosides attenuate mammalian type 2 inflammatory responses. Proc Natl Acad Sci U S A 2022, 119, e2108686119. DOI: 10.1073/pnas.2108686119 PMID: 35210367
Falcke, J. M.; Bose, N.; Artyukhin, A. B.; Rödelsperger, C.; Markov, G. V.; Yim, J. J.; Grimm, D.; Claassen, M. H.; Panda, O.; Baccile, J. A.; Zhang, Y. K.; Le, H. H.; Jolic, D.; Schroeder, F. C.; Sommer, R. J. Linking genomic and metabolomic natural variation uncovers nematode pheromone biosynthesis. Cell Chem. Biol. 2018, 25, 787–796. DOI: 10.1016/j.chembiol.2018.04.004 PMID: 29779955
Liu, Z.; Kariya, M. J.; Chute, C. D.; Pribadi, A. K.; Leinwand, S. G.; Tong, A.; Curran, K. P.; Bose, N.; Schroeder, F. C.; Srinivasan, J.; Chalasani, S. H. Predator-secreted sulfolipids induce defensive responses in C. elegans. Nat. Commun. 2018, 9, 1128. DOI: 10.1038/s41467-018-03333-6 PMID: 29555902
Narayan, A.; Venkatachalam, V.; Durak, O.; Reilly, D. K.; Bose, N.; Schroeder, F. C.; Samuel, A. D.; Srinivasan, J.; Sternberg, P. W. Contrasting responses within a single neuron class enable sex-specific attraction in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E1392–E1401. DOI: 10.1073/pnas.1600786113 PMID: 26903633
Chaudhuri, J.; Bose, N.; Tandonnet, S.; Adams, S.; Zuco, G.; Kache, V.; Parihar, M.; von Reuss, S. H.; Schroeder, F. C.; Pires-daSilva, A. Mating dynamics in a nematode with three sexes and its evolutionary implications. Sci. Rep. 2015, 5, 17676. DOI: 10.1038/srep17676 PMID: 26631423
Yim, J. J.; Bose, N.; Meyer, J. M.; Sommer, R. J.; Schroeder, F. C. Nematode signaling molecules derived from multimodular assembly of primary metabolic building blocks. Org. Lett. 2015, 17, 1648–1651. DOI: 10.1021/acs.orglett.5b00329 PMID: 25782998
Zugasti, O.; Bose, N.; Squiban, B.; Belougne, J.; Kurz, C. L.; Schroeder, F. C.; Pujol, N.; Ewbank, J. J. Activation of a G protein-coupled receptor by its endogenous ligand triggers the innate immune response of Caenorhabditis elegans. Nat. Immunol. 2014, 15, 833–838. DOI: 10.1038/ni.2957 PMID: 25086774
Bose, N.; Meyer, J. M.; Yim, J. J.; Mayer, M. G.; Markov, G. V.; Ogawa, A.; Schroeder, F. C.; Sommer, R. J. Natural variation in dauer pheromone production and sensing supports intraspecific competition in nematodes. Curr. Biol. 2014, 24, 1536–1541. DOI: 10.1016/j.cub.2014.05.045 PMID: 24980503
Mahanti, P.; Bose, N.; Bethke, A.; Judkins, J. C.; Wollam, J.; Dumas, K. J.; Zimmerman, A. M.; Campbell, S. L.; Hu, P. J.; Antebi, A.; Schroeder, F. C. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor, regulating C. elegans development and lifespan. Cell Metab. 2014, 19, 73–83. DOI: 10.1016/j.cmet.2013.11.024 PMID: 24411940
Artyukhin, A. B.; Yim, J. J.; Srinivasan, J.; Izrayelit, Y.; Bose, N.; von Reuss, S. H.; Jo, Y.; Jordan, J. M.; Baugh, L. R.; Cheong, M.; Sternberg, P. W.; Avery, L.; Schroeder, F. C. Succinylated octopamine ascarosides and a new pathway of biogenic amine metabolism in Caenorhabditis elegans. J. Biol. Chem. 2013, 288, 18778–18783. DOI: 10.1074/jbc.C113.477000 PMID: 23689506
Izrayelit, Y.; Robinette, S. L.; Bose, N.; von Reuss, S. H.; Schroeder, F. C. 2D NMR-based metabolomics uncovers interactions between conserved biochemical pathways in the model organism Caenorhabditis elegans. ACS Chem. Biol. 2013, 8, 314–319. DOI: 10.1021/cb3004644 PMID: 23163760
Bose, N.; Ogawa, A.; von Reuss, S. H.; Yim, J. J.; Ragsdale, E. J.; Sommer, R. J.; Schroeder, F. C. Complex small-molecule architectures regulate phenotypic plasticity in a nematode. Angew. Chem. Int. Ed. Engl. 2012, 51, 12438–12443. DOI: 10.1002/anie.201206797 PMID: 23161728
Srinivasan, J.; von Reuss, S. H.; Bose, N.; Zaslaver, A.; Mahanti, P.; Ho, M. C.; O’Doherty, O. G.; Edison, A. S.; Sternberg, P. W.; Schroeder, F. C. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol. 2012, 10, e1001237. DOI: 10.1371/journal.pbio.1001237 PMID: 22253572
von Reuss, S. H.; Bose, N.; Srinivasan, J.; Yim, J. J.; Judkins, J. C.; Sternberg, P. W.; Schroeder, F. C. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J. Am. Chem. Soc. 2012, 134, 1817–1824. DOI: 10.1021/ja210202y PMID: 22239548
Bothwell, Ian Shu, X.; Dai, Q.; Wu, T.; Bothwell, I. R.; Yue, Y.; Zhang, Z.; Cao, J.; Fei, Q.; Luo, M.; He, C.; Liu, J. N6-Allyladenosine: A new small molecule for RNA labeling identified by mutation assay. J. Am. Chem. Soc. 2017, 139, 17213–17216. DOI: 10.1021/jacs.7b06837 PMID: 29116772
Linscott, J. A.; Kapilashrami, K.; Wang, Z.; Senevirathne, C.; Bothwell, I. R.; Blum, G.; Luo, M. Kinetic isotope effects reveal early transition state of protein lysine methyltransferase SET8. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E8369-E8378. DOI: 10.1073/pnas.1609032114 PMID: 27940912
Bothwell, I. R.; Luo, M. Large-scale, protection-free synthesis of Se-adenosyl-L-selenomethionine analogues and their application as cofactor surrogates of methyltransferases. Org. Lett. 2014, 16, 3056–3059. DOI: 10.1021/ol501169y PMID: 24852128
Islam, K.; Chen, Y.; Wu, H.; Bothwell, I. R.; Blum, G. J.; Zeng, H.; Dong, A.; Zheng, W.; Min, J.; Deng, H.; Luo, M. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 16778–16783. DOI: 10.1073/pnas.1216365110 PMID: 24082136
Winter, J. M.; Chiou, G.; Bothwell, I. R.; Xu, W.; Garg, N. K.; Luo, M.; Tang, Y. Expanding the structural diversity of polyketides by exploring the cofactor tolerance of an inline methyltransferase domain. Org. Lett. 2013, 15, 3774–3777. DOI: 10.1021/ol401723h PMID: 23837609
Blum, G.; Bothwell, I. R.; Islam, K.; Luo, M. Profiling protein methylation with cofactor analog containing terminal alkyne functionality. Curr. Protoc. Chem. Biol. 2013, 5, 67–88. DOI: 10.1002/9780470559277.ch120241 PMID: 23788324
Bothwell, I. R.; Islam, K.; Chen, Y.; Zheng, W.; Blum, G.; Deng, H.; Luo, M. Se-adenosyl-L-selenomethionine cofactor analogue as a reporter of protein methylation. J. Am. Chem. Soc. 2012, 134, 14905–14912. DOI: 10.1021/ja304782r PMID: 22917021
Islam, K.; Bothwell, I.; Chen, Y.; Sengelaub, C.; Wang, R.; Deng, H.; Luo, M. Bioorthogonal profiling of protein methylation using azido derivative of S-adenosyl-L-methionine. J. Am. Chem. Soc. 2012, 134, 5909–5915. DOI: 10.1021/ja2118333 PMID: 22404544
Burdette, Colin Saca, V. R.; Burdette, C.; Sakmar, T. P. GPCR biosensors to study conformational dynamics and signaling in drug discovery. Annu. Rev. Pharmacol. Toxicol. 2024, in press. DOI: 10.1146/annurev-pharmtox-061724-080836 PMID: 39298797
Burnside, Chloe Harper, N. J.†; Burnside, C.†; Klinge, S. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature 2023, 614, 175–181. DOI: 10.1038/s41586-022-05621-0 PMID: 36482135
Cahir, Clare Yang, L.; Han, Y.; Zhou, T.; Lacko, L. A.; Saeed, M.; Tan, C.; Danziger, R.; Zhu, J.; Zhao, Z.; Cahir, C.; Giana, A. M.; Li, Y.; Dong, X.; Moroziewicz, D.; NYSCF Global Stem Cell Array® Team; Paull, D.; Chen, Z.; Zhong, A.; Noggle, S. A.; Rice, C. M.; Qi, Q.; Evans, T.; Chen, S. Isogenic human trophectoderm cells demonstrate the role of NDUFA4 and associated variants in ZIKV infection. iScience 2023, 26, 107001. DOI: 10.1016/j.isci.2023.107001 PMID: 37534130
Han, Y.; Tan, L.; Zhou, T.; Yang, L.; Carrau, L.; Lacko, L. A.; Saeed, M.; Jiajun, Z.; Zhao, Z.; Nilsson-Payant, B. E.; Tenorio Lira Neto, F.; Cahir, C.; Giana, A. M.; Chai, J. C.; Li, Y.; Dong, X.; Moroziewicz, D.; NYSCF Global Stem Cell Array Team; Paull, D; Zhang, T.; Koo, S.; Tan, C.; Danziger, R.; Ba, Q.; Feng, L; Chen, Z.; Zhong, A.; Wise, G. J.; Xiang, J. Z.; Wang, H.; Schwartz, R. E.; tenOever, B. R.; Noggle, S. A.; Rice, C. M.; Qi, Q.; Evans, T.; Chen, S. A human iPSC-array-based GWAS identifies a virus susceptibility locus in the NDUFA4 gene and functional variants. Cell Stem Cell 2022, 29, 1475-1490. DOI: 10.1016/j.stem.2022.09.008 PMID: 36206731
Carl, Ayala Reynolds, M. J.; Hachicho, C.; Carl, A. G.; Gong, R.; Alushin, G. M. Bending forces and nucleotide state jointly regulate F-actin structure. Nature 2022, 611, 380–386. DOI: 10.1038/s41586-022-05366-w PMID: 36289330
Uson, M. L.; Carl, A.; Goldgur, Y.; Shuman, S. Crystal structure and mutational analysis of Mycobacterium smegmatis FenA highlight active site amino acids and three metal ions essential for flap endonuclease and 5′ exonuclease activities. Nucleic Acids Res. 2018, 46, 4164–4175. DOI: 10.1093/nar/gky238 PMID: 29635474
Chaker-Margot, Malik Singh, S.; Vanden Broeck, A.; Miller, L.; Chaker-Margot, M.; Klinge, S. Nucleolar maturation of the human small subunit processome. Science 2021, 373, eabj5338. DOI: 10.1126/science.abj5338 PMID: 34516797
Chaker-Margot, M.; Klinge, S. Assembly and early maturation of large subunit precursors. RNA 2019, 25, 465–471. DOI: 10.1261/rna.069799.118 PMID: 30670483
Bolze, A.; Boisson, B.; Bosch, B.; Antipenko, A.; Bouaziz, M.; Sackstein, P.; Chaker-Margot, M.; Barlogis, V.; Briggs, T.; Colino, E.; Elmore, A. C.; Fischer, A.; Genel, F.; Hewlett, A.; Jedidi, M.; Kelecic, J.; Krüger, R.; Ku, C. L.; Kumararatne, D.; Lefevre-Utile, A.; Loughlin, S.; Mahlaoui, N.; Markus, S.; Garcia, J. M.; Nizon, M.; Oleastro, M.; Pac, M.; Picard, C.; Pollard, A. J.; Rodriguez-Gallego, C.; Thomas, C.; Von Bernuth, H.; Worth, A.; Meyts, I.; Risolino, M.; Selleri, L.; Puel, A.; Klinge, S.; Abel, L.; Casanova, J. L. Incomplete penetrance for isolated congenital asplenia in humans with mutations in translated and untranslated RPSA exons. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, E8007–E8016. DOI: 10.1073/pnas.1805437115 PMID: 30072435
Chaker-Margot, M.* Assembly of the small ribosomal subunit in yeast: Mechanism and regulation. RNA 2018, 24, 881–891. DOI: 10.1261/rna.066985.118 PMID: 29712726
Sanghai, Z. A.; Miller, L.; Molloy, K. R.; Barandun, J.; Hunziker, M.; Chaker-Margot, M.; Wang, J.; Chait, B. T.; Klinge, S. Modular assembly of the nucleolar pre-60S ribosomal subunit. Nature 2018, 556, 126–129. DOI: 10.1038/nature26156 PMID: 29512650
Barandun, J.; Chaker-Margot, M.; Hunziker, M.; Molloy, K. R.; Chait, B. T.; Klinge, S. The complete structure of the small-subunit processome. Nat. Struct. Mol. Biol. 2017, 24, 944–953. DOI: 10.1038/nsmb.3472 PMID: 28945246
Chaker-Margot, M.; Barandun, J.; Hunziker, M.; Klinge, S. Architecture of the yeast small subunit processome. Science 2017, 355, eaal1880. DOI: 10.1126/science.aal1880 PMID: 27980088
Hunziker, M.; Barandun, J.; Petfalski, E.; Tan, D.; Delan-Forino, C.; Molloy, K. R.; Kim, K. H.; Dunn-Davies, H.; Shi, Y.; Chaker-Margot, M.; Chait, B. T.; Walz, T.; Tollervey, D.; Klinge, S. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly. Nat. Commun. 2016, 7, 12090. DOI: 10.1038/ncomms12090 PMID: 27354316
Chaker-Margot, M.; Hunziker, M.; Barandun, J.; Dill, B. D.; Klinge, S. Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis. Nat. Struct. Mol. Biol. 2015, 22, 920–923. DOI: 10.1038/nsmb.3111 PMID: 26479197
Chakraborty, Debjani Feng, Z.; Chakraborty, D.; Dewell, S. B.; Reddy, B. V.; Brady, S. F. Environmental DNA-encoded antibiotics fasamycins A and B inhibit FabF in type II fatty acid biosynthesis. J. Am. Chem. Soc. 2012, 134, 2981–2987. DOI: 10.1021/ja207662w PMID: 22224500
Chakraborty, D.; Islam, K.; Luo, M. Facile synthesis and altered ionization efficiency of diverse Nε-alkyllysine-containing peptides. Chem. Commun. (Camb.) 2012, 48, 1514–1516. DOI: 10.1039/c1cc14711k PMID: 21959946
Chakravarty, Anupam Chakravarty, A. K.; Smith, P.; Jalan, R.; Shuman, S. Structure, mechanism, and specificity of a eukaryal tRNA restriction enzyme involved in self-nonself discrimination. Cell Rep 2014, 7, 339–347. DOI: 10.1016/j.celrep.2014.03.034 PMID: 24726365
Das, U.; Chakravarty, A. K.; Remus, B. S.; Shuman, S. Rewriting the rules for end joining via enzymatic splicing of DNA 3´-PO4 and 5´-OH ends. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 20437–20442. DOI: 10.1073/pnas.1314289110 PMID: 24218597
Chakravarty, A. K.; Shuman, S. The sequential 2´,3´-cyclic phosphodiesterase and 3´-phosphate/5´-OH ligation steps of the RtcB RNA splicing pathway are GTP-dependent. Nucleic Acids Res. 2012, 40, 8558–8567. DOI: 10.1093/nar/gks558 PMID: 22730297
Chakravarty, A. K.; Subbotin, R.; Chait, B. T.; Shuman, S. RNA ligase RtcB splices 3´-phosphate and 5´-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3´)pp(5´)G intermediates. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 6072–6077. DOI: 10.1073/pnas.1201207109 PMID: 22474365
Chakravarty, A. K.; Smith, P.; Shuman, S. Structures of RNA 3´-phosphate cyclase bound to ATP reveal the mechanism of nucleotidyl transfer and metal-assisted catalysis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 21034–21039. DOI: 10.1073/pnas.1115560108 PMID: 22167800
Tanaka, N.; Chakravarty, A. K.; Maughan, B.; Shuman, S. Novel mechanism of RNA repair by RtcB via sequential 2´,3´-cyclic phosphodiesterase and 3´-phosphate/5´-hydroxyl ligation reactions. J. Biol. Chem. 2011, 286, 43134–43143. DOI: 10.1074/jbc.M111.302133 PMID: 22045815
Jain, R.; Poulos, M. G.; Gros, J.; Chakravarty, A. K.; Shuman, S. Substrate specificity and mutational analysis of Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA 2011, 17, 1336–1343. DOI: 10.1261/rna.2722711 PMID: 21610213
Chakravarty, A. K.; Shuman, S. RNA 3´-phosphate cyclase (RtcA) catalyzes ligase-like adenylylation of DNA and RNA 5´-monophosphate ends. J. Biol. Chem. 2011, 286, 4117–4122. DOI: 10.1074/jbc.M110.196766 PMID: 21098490
Chao, Xingjuan Chao, X.; Muff, T. J.; Park, S. Y.; Zhang, S.; Pollard, A. M.; Ordal, G. W.; Bilwes, A. M.; Crane, B. R. A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation. Cell 2006, 124, 561–571. DOI: 10.1016/j.cell.2005.11.046 PMID: 16469702
Park, S. Y.; Chao, X.; Gonzalez-Bonet, G.; Beel, B. D.; Bilwes, A. M.; Crane, B. R. Structure and function of an unusual family of protein phosphatases: the bacterial chemotaxis proteins CheC and CheX. Mol. Cell 2004, 16, 563–574. DOI: 10.1016/j.molcel.2004.10.018 PMID: 15546616
Charron, Guillaume Charron, G.; Li, M. M.; MacDonald, M. R.; Hang, H. C. Prenylome profiling reveals S-farnesylation is crucial for membrane targeting and antiviral activity of ZAP long-isoform. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 11085–11090. DOI: 10.1073/pnas.1302564110 PMID: 23776219
Jiang, H.; Khan, S.; Wang, Y.; Charron, G.; He, B.; Sebastian, C.; Du, J.; Kim, R.; Ge, E.; Mostoslavsky, R.; Hang, H. C.; Hao, Q.; Lin, H. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013, 496, 110–113. DOI: 10.1038/nature12038 PMID: 23552949
Hicks, S. W.; Charron, G.; Hang, H. C.; Galán, J. E. Subcellular targeting of Salmonella virulence proteins by host-mediated S-palmitoylation. Cell Host Microbe 2011, 10, 9–20. DOI: 10.1016/j.chom.2011.06.003 PMID: 21767808
Hang, H. C.; Wilson, J. P.; Charron, G. Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking. Acc. Chem. Res. 2011, 44, 699–708. DOI: 10.1021/ar200063v PMID: 21675729
Yount, J. S.; Charron, G.; Hang, H. C. Bioorthogonal proteomics of 15-hexadecynyloxyacetic acid chemical reporter reveals preferential targeting of fatty acid modified proteins and biosynthetic enzymes. Bioorg. Med. Chem. 2012, 20, 650–654. DOI: 10.1016/j.bmc.2011.03.062 PMID: 21524915
Zuckerman, D. M.; Hicks, S. W.; Charron, G.; Hang, H. C.; Machamer, C. E. Differential regulation of two palmitoylation sites in the cytoplasmic tail of the beta1-adrenergic receptor. J. Biol. Chem. 2011, 286, 19014–19023. DOI: 10.1074/jbc.M110.189977 PMID: 21464135
Charron, G.; Tsou, L. K.; Maguire, W.; Yount, J. S.; Hang, H. C. Alkynyl-farnesol reporters for detection of protein S-prenylation in cells. Mol Biosyst 2010, 7, 67–73. DOI: 10.1039/c0mb00183j PMID: 21107478
Yang, Y. Y.; Grammel, M.; Raghavan, A. S.; Charron, G.; Hang, H. C. Comparative analysis of cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics. Chem. Biol. 2010, 17, 1212–1222. DOI: 10.1016/j.chembiol.2010.09.012 PMID: 21095571
Wilson, J. P.; Raghavan, A. S.; Yang, Y. Y.; Charron, G.; Hang, H. C. Proteomic analysis of fatty-acylated proteins in mammalian cells with chemical reporters reveals S-acylation of histone H3 variants. Mol. Cell Proteomics 2011, 10, M110.001198. DOI: 10.1074/mcp.M110.001198 PMID: 21076176
Ivanov, S. S.; Charron, G.; Hang, H. C.; Roy, C. R. Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J. Biol. Chem. 2010, 285, 34686–34698. DOI: 10.1074/jbc.M110.170746 PMID: 20813839
Yount, J. S.; Moltedo, B.; Yang, Y. Y.; Charron, G.; Moran, T. M.; López, C. B.; Hang, H. C. Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat. Chem. Biol. 2010, 6, 610–614. DOI: 10.1038/nchembio.405 PMID: 20601941
Zhang, M. M.; Tsou, L. K.; Charron, G.; Raghavan, A. S.; Hang, H. C. Tandem fluorescence imaging of dynamic S-acylation and protein turnover. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 8627–8632. DOI: 10.1073/pnas.0912306107 PMID: 20421494
Rangan, K. J.; Yang, Y. Y.; Charron, G.; Hang, H. C. Rapid visualization and large-scale profiling of bacterial lipoproteins with chemical reporters. J. Am. Chem. Soc. 2010, 132, 10628–10629. DOI: 10.1021/ja101387b PMID: 20230003
Charron, G.; Wilson, J.; Hang, H. C. Chemical tools for understanding protein lipidation in eukaryotes. Curr. Opin. Chem. Biol. 2009, 13, 382–391. DOI: 10.1016/j.cbpa.2009.07.010 PMID: 19699139
Charron, G.; Zhang, M. M.; Yount, J. S.; Wilson, J.; Raghavan, A. S.; Shamir, E.; Hang, H. C. Robust fluorescent detection of protein fatty-acylation with chemical reporters. J. Am. Chem. Soc. 2009, 131, 4967–4975. DOI: 10.1021/ja810122f PMID: 19281244
Raghavan, A.; Charron, G.; Flexner, J.; Hang, H. C. Chemical probes for profiling fatty acid-associated proteins in living cells. Bioorg. Med. Chem. Lett. 2008, 18, 5982–5986. DOI: 10.1016/j.bmcl.2008.09.083 PMID: 18929483
Chen, Chen Kim, M.; McCann, J. J.; Fortner, J.; Randall, E.; Chen, C.; Chen, Y.; Yaari, Z.; Wang, Y.; Koder, R. L.; Heller, D. A. Quantum defect sensitization via phase-changing supercharged antibody Fragments. J. Am. Chem. Soc. 2024, 146, 12454–12462. DOI: 10.1021/jacs.4c00149 PMID: 38687180
Chen, C.; Wu, Y.; Wang, S. T.; Berisha, N.; Manzari, M. T.; Vogt, K.; Gang, O.; Heller, D. A. Fragment-based drug nanoaggregation reveals drivers of self-assembly. Nat. Commun. 2023, 14, 8340. DOI: 10.1038/s41467-023-43560-0 PMID: 38097573
Antman-Passig, M.; Yaari, Z.; Goerzen, D.; Parikh, R.; Chatman, S.; Komer, L. E.; Chen, C.; Grabarnik, E.; Mathieu, M.; Haimovitz-Friedman, A.; Heller, D. A. Nanoreporter identifies lysosomal storage disease lipid accumulation intracranially. Nano Lett. 2023, 23, 10687–10695. DOI: 10.1021/acs.nanolett.3c02502 PMID: 37889874
Kim, M.; Panagiotakopoulou, M.; Chen, C.; Ruiz, S. B.; Ganesh, K.; Tammela, T.; Heller, D. A. Micro-engineering and nano-engineering approaches to investigate tumour ecosystems. Nat. Rev. Cancer 2023, 23, 581–599. DOI: 10.1038/s41568-023-00593-3 PMID: 37353679
Kim, M.†; Chen, C.†; Yaari, Z.; Frederiksen, R.; Randall, E.; Wollowitz, J.; Cupo, C.; Wu, X.; Shah, J.; Worroll, D.; Lagenbacher, R. E.; Goerzen, D.; Li, Y. M.; An, H.; Wang, Y.; Heller, D. A. Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo. Nat. Chem. Biol. 2023, 19, 1448–1457. DOI: 10.1038/s41589-023-01364-9 PMID: 37322156
Kim, M.; Chen, C.; Wang, P.; Mulvey, J. J.; Yang, Y.; Wun, C.; Antman-Passig, M.; Luo, H. B.; Cho, S.; Long-Roche, K.; Ramanathan, L. V.; Jagota, A.; Zheng, M.; Wang, Y.; Heller, D. A. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nat. Biomed. Eng. 2022, 6, 267–275. DOI: 10.1038/s41551-022-00860-y PMID: 35301449
Chen, C.; Yaari, Z.; Apfelbaum, E.; Grodzinski, P.; Shamay, Y.; Heller, D. A. Merging data curation and machine learning to improve nanomedicines. Adv. Drug Deliv. Rev. 2022, 183, 114172. DOI: 10.1016/j.addr.2022.114172 PMID: 35189266
Chen, Shi Williams, R. M.†; Chen, S.†; Langenbacher, R. E.; Galassi, T. V.; Harvey, J. D.; Jena, P. V.; Budhathoki-Uprety, J.; Luo, M.; Heller, D. A. Harnessing nanotechnology to expand the toolbox of chemical biology. Nat. Chem. Biol. 2021, 17, 129–137. DOI: 10.1038/s41589-020-00690-6 PMID: 33414556
Cai, X. C.; Zhang, T.; Kim, E. J.; Jiang, M.; Wang, K.; Wang, J.; Chen, S.; Zhang, N.; Wu, H.; Li, F.; Dela Seña, C. C.; Zeng, H.; Vivcharuk, V.; Niu, X.; Zheng, W.; Lee, J. P.; Chen, Y.; Barsyte, D.; Szewczyk, M.; Hajian, T.; Ibáñez, G.; Dong, A.; Dombrovski, L.; Zhang, Z.; Deng, H.; Min, J.; Arrowsmith, C. H.; Mazutis, L.; Shi, L.; Vedadi, M.; Brown, P. J.; Xiang, J.; Qin, L. X.; Xu, W.; Luo, M. A chemical probe of CARM1 alters epigenetic plasticity against breast cancer cell invasion. eLife 2019, 8, e47110. DOI: 10.7554/eLife.47110 PMID: 31657716
Chen, S.; Wiewiora, R. P.; Meng, F.; Babault, N.; Ma, A.; Yu, W.; Qian, K.; Hu, H.; Zou, H.; Wang, J.; Fan, S.; Blum, G.; Pittella-Silva, F.; Beauchamp, K. A.; Tempel, W.; Jiang, H.; Chen, K.; Skene, R. J.; Zheng, Y. G.; Brown, P. J.; Jin, J.; Luo, C.; Chodera, J. D.; Luo, M. The dynamic conformational landscape of the protein methyltransferase SETD8. eLife 2019, 8, e45403. DOI: 10.7554/eLife.45403 PMID: 31081496
Chen, S.; Kapilashrami, K.; Senevirathne, C.; Wang, Z.; Wang, J.; Linscott, J. A.; Luo, M. Substrate-differentiated transition states of SET7/9-catalyzed lysine methylation. J. Am. Chem. Soc. 2019, 141, 8064–8067. DOI: 10.1021/jacs.9b02553 PMID: 31034218
Chen, Yuanhuang Huber, T.; Horioka-Duplix, M.; Chen, Y.; Saca, V. R.; Ceraudo, E.; Chen, Y.; Sakmar, T. P. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci. Signal. 2024, 17, eadp3967. DOI: 10.1126/scisignal.adp3967 PMID: 39288219
Kotliar, I. B.; Bendes, A.; Dahl, L.; Chen, Y.; Saarinen, M.; Ceraudo, E.; Dodig-Crnković, T.; Uhlén, M.; Svenningsson, P.; Schwenk, J. M.; Sakmar, T. P. Multiplexed mapping of the interactome of GPCRs with receptor activity-modifying proteins. Sci. Adv. 2024, 10, eado9959. DOI: 10.1126/sciadv.ado9959 PMID: 39083597
Chen, Zhen Chen, Z.; Suzuki, H.; Kobayashi, Y.; Wang, A. C.; DiMaio, F.; Kawashima, S. A.; Walz, T.; Kapoor, T. M. Structural insights into Mdn1, an essential AAA protein required for ribosome biogenesis. Cell 2018, 175, 822–834. DOI: 10.1016/j.cell.2018.09.015 PMID: 30318141
Kawashima, S. A.; Chen, Z.; Aoi, Y.; Patgiri, A.; Kobayashi, Y.; Nurse, P.; Kapoor, T. M. Potent, reversible, and specific chemical inhibitors of eukaryotic ribosome biogenesis. Cell 2016, 167, 512–524. DOI: 10.1016/j.cell.2016.08.070 PMID: 27667686 († = co-first authors)
Chiang, Ethan Veatch, S. L.; Chiang, E. N.; Sengupta, P.; Holowka, D. A.; Baird, B. A. Quantitative nanoscale analysis of IgE-FcεRI clustering and coupling to early signaling proteins. J Phys Chem B 2012, 116, 6923–6935. DOI: 10.1021/jp300197p PMID: 22397623
Veatch, S. L.; Machta, B. B.; Shelby, S. A.; Chiang, E. N.; Holowka, D. A.; Baird, B. A. Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting. PLoS ONE 2012, 7, e31457. DOI: 10.1371/journal.pone.0031457 PMID: 22384026
Chiang, E. N.; Dong, R.; Ober, C. K.; Baird, B. A. Cellular responses to patterned poly(acrylic acid) brushes. Langmuir 2011, 27, 7016–7023. DOI: 10.1021/la200093e PMID: 21557546
Haka, A. S.; Grosheva, I.; Chiang, E.; Buxbaum, A. R.; Baird, B. A.; Pierini, L. M.; Maxfield, F. R. Macrophages create an acidic extracellular hydrolytic compartment to digest aggregated lipoproteins. Mol. Biol. Cell 2009, 20, 4932–4940. DOI: 10.1091/mbc.E09-07-0559 PMID: 19812252
Chistodolou-Rubalcava, Sophia Leicher, R.†; Osunsade, A.†; Chua, G. N. L.†; Faulkner, S. C.†; Latham, A. P.; Watters, J. W.; Nguyen, T.; Beckwitt, E. C.; Christodoulou-Rubalcava, S.; Young, P. G.; Zhang, B.; David, Y.; Liu, S. Single-stranded nucleic acid binding and coacervation by linker histone H1. Nat. Struct. Mol. Biol. 2022, 29, 463–471. DOI: 10.1038/s41594-022-00760-4 PMID: 35484234
Chua, Gabriella Ng, H.†; Begum, M.†; Chua, G. N. L.†; Liu, S. In situ nucleosome assembly for single-molecule correlative force and fluorescence microscopy. J. Vis. Exp. 2024, e66579. DOI: 10.3791/66579 PMID: 39311556
Chua, G. N. L.; Watters, J. W.; Olinares, P. D. B.; Begum, M.; Vostal, L. E.; Luo, J. A.; Chait, B. T.; Liu, S. Differential dynamics specify MeCP2 function at nucleosomes and methylated DNA. Nat. Struct. Mol. Biol. 2024, 31, 1789–1797. DOI: 10.1038/s41594-024-01373-9 PMID: 39164525
Chua, G. N. L.; Liu, S. When force met fluorescence: Single-molecule manipulation and visualization of protein-DNA interactions. Annu. Rev. Biophys. 2024, 53, 169–191. DOI: 10.1146/annurev-biophys-030822-032904 PMID: 38237015
Chua, G. N. L.*; Vandana, J. J.*; Hsieh, C. C.* Students’ perspective on scientific training. ChemBioChem 2023, 24, e202300054. DOI: 10.1002/cbic.202300054 PMID: 37098995
Leicher, R.†; Osunsade, A.†; Chua, G. N. L.†; Faulkner, S. C.†; Latham, A. P.; Watters, J. W.; Nguyen, T.; Beckwitt, E. C.; Christodoulou-Rubalcava, S.; Young, P. G.; Zhang, B.; David, Y.; Liu, S. Single-stranded nucleic acid binding and coacervation by linker histone H1. Nat. Struct. Mol. Biol. 2022, 29, 463–471. DOI: 10.1038/s41594-022-00760-4 PMID: 35484234
Chui, Ashley Tsamouri, L. P.; Hsiao, J. C.; Wang, Q.; Geeson, M. B.; Huang, H. C.; Nambiar, D. R.; Zou, M.; Ball, D. P.; Chui, A. J.; Bachovchin, D. A. The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation. Cell Chem. Biol. 2024, 31, 1699–1713. DOI: 10.1016/j.chembiol.2024.06.004 PMID: 38991619
Orth-He, E. L.†; Huang, H. C.†; Rao, S. D.; Wang, Q.; Chen, Q.; O’Mara, C. M.; Chui, A. J.; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Cross, J. R.; Bachovchin, D. A. Protein folding stress potentiates NLRP1 and CARD8 inflammasome activation. Cell Rep. 2023, 42, 111965. DOI: 10.1016/j.celrep.2022.111965 PMID: 36649711
Hsiao, J. C.; Neugroschl, A. R.; Chui, A. J.; Taabazuing, C. Y.; Griswold, A. R.; Wang, Q.; Huang, H. C.; Orth-He, E. L.; Ball, D. P.; Hiotis, G.; Bachovchin, D. A. A ubiquitin-independent proteasome pathway controls activation of the CARD8 inflammasome. J. Biol. Chem. 2022, 298, 102032. DOI: 10.1016/j.jbc.2022.102032 PMID: 35580636
Rao, S. D.†; Chen, Q.†; Wang, Q.†; Orth-He, E. L.†; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Huang, H. C.; Chui, A. J.; Covelli, D. J.; You, S.; Cross, J. R.; Bachovchin, D. A. M24B aminopeptidase inhibitors selectively activate the CARD8 inflammasome. Nat. Chem. Biol. 2022, 18, 565–574. DOI: 10.1038/s41589-021-00964-7 PMID: 35165443
Chui, A. J.; Griswold, A. R.; Taabazuing, C. Y.; Orth, E. L.; Gai, K.; Rao, S. D.; Ball, D. P.; Hsiao, J. C.; Bachovchin, D. A. Activation of the CARD8 inflammasome requires a disordered region. Cell Rep. 2020, 33, 108264. DOI: 10.1016/j.celrep.2020.108264 PMID: 33053349
Griswold, A. R.; Ball, D. P.; Bhattacharjee, A.; Chui, A. J.; Rao, S. D.; Taabazuing, C. Y.; Bachovchin, D. A. DPP9’s enzymatic activity and not its binding to CARD8 inhibits inflammasome activation. ACS Chem. Biol. 2019, 14, 2424–2429. DOI: 10.1021/acschembio.9b00462 PMID: 31525884
Gai, K.; Okondo, M. C.; Rao, S. D.; Chui, A. J.; Ball, D. P.; Johnson, D. C.; Bachovchin, D. A. DPP8/9 inhibitors are universal activators of functional NLRP1 alleles. Cell Death. Dis. 2019, 10, 587. DOI: 10.1038/s41419-019-1817-5 PMID: 31383852
Chui, A. J.; Okondo, M. C.; Rao, S. D.; Gai, K.; Griswold, A. R.; Johnson, D. C.; Ball, D. P.; Taabazuing, C. Y.; Orth, E. L.; Vittimberga, B. A.; Bachovchin, D. A. N-terminal degradation activates the NLRP1B inflammasome. Science 2019, 364, 82–85. DOI: 10.1126/science.aau1208 PMID: 30872531
Johnson, D. C.; Taabazuing, C. Y.; Okondo, M. C.; Chui, A. J.; Rao, S. D.; Brown, F. C.; Reed, C.; Peguero, E.; de Stanchina, E.; Kentsis, A.; Bachovchin, D. A. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 2018, 24, 1151–1156. DOI: 10.1038/s41591-018-0082-y PMID: 29967349
Okondo, M. C.; Rao, S. D.; Taabazuing, C. Y.; Chui, A. J.; Poplawski, S. E.; Johnson, D. C.; Bachovchin, D. A. Inhibition of Dpp8/9 activates the Nlrp1b inflammasome. Cell Chem. Biol. 2018, 25, 262–267. DOI: 10.1016/j.chembiol.2017.12.013 PMID: 29396289
Okondo, M. C.; Johnson, D. C.; Sridharan, R.; Go, E. B.; Chui, A. J.; Wang, M. S.; Poplawski, S. E.; Wu, W.; Liu, Y.; Lai, J. H.; Sanford, D. G.; Arciprete, M. O.; Golub, T. R.; Bachovchin, W. W.; Bachovchin, D. A. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat. Chem. Biol. 2017, 13, 46–53. DOI: 10.1038/nchembio.2229 PMID: 27820798
Çìftçì, Hatìce Dìdar Fortea, E.; Lee, S.; Chadda, R.; Argyros, Y.; Sandal, P.; Mahoney-Kruszka, R.; Ciftci, H. D.; Falzone, M. E.; Huysmans, G.; Robertson, J. L.; Boudker, O.; Accardi, A. Structural basis of pH-dependent activation in a CLC transporter. Nat. Struct. Mol. Biol. 2024, 31, 644–656. DOI: 10.1038/s41594-023-01210-5 PMID: 38279055
Reddy, K. D.; Ciftci, D.; Scopelliti, A. J.; Boudker, O. The archaeal glutamate transporter homologue GltPh shows heterogeneous substrate binding. J. Gen. Physiol. 2022, 154, e202213131. DOI: 10.1085/jgp.202213131 PMID: 35452090
Ciftci, D.; Martens, C.; Ghani, V. G.; Blanchard, S. C.; Politis, A.; Huysmans, G. H. M.; Boudker, O. Linking function to global and local dynamics in an elevator-type transporter. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2025520118. DOI: 10.1073/pnas.2025520118 PMID: 34873050
Ciftci, D.; Huysmans, G. H. M.; Wang, X.; He, C.; Terry, D.; Zhou, Z.; Fitzgerald, G.; Blanchard, S. C.; Boudker, O. FRET-based microscopy assay to measure activity of membrane amino acid transporters with single-transporter resolution. Bio Protoc. 2021, 11, e3970. DOI: 10.21769/BioProtoc.3970 PMID: 33889664
Huysmans, G. H. M.; Ciftci, D.; Wang, X.; Blanchard, S. C.; Boudker, O. The high-energy transition state of the glutamate transporter homologue GltPh. EMBO J. 2020, 40, e105415. DOI: 10.15252/embj.2020105415 PMID: 33185289
Ciftci, D.; Huysmans, G. H. M.; Wang, X.; He, C.; Terry, D.; Zhou, Z.; Fitzgerald, G.; Blanchard, S. C.; Boudker, O. Single-molecule transport kinetics of a glutamate transporter homolog shows static disorder. Sci. Adv. 2020, 6, eaaz1949. DOI: 10.1126/sciadv.aaz1949 PMID: 32523985
Cisar, Justin Lun, S.; Guo, H.; Adamson, J.; Cisar, J. S.; Davis, T. D.; Chavadi, S. S.; Warren, J. D.; Quadri, L. E.; Tan, D. S.; Bishai, W. R. Pharmacokinetic and in vivo efficacy studies of the mycobactin biosynthesis inhibitor salicyl-AMS in mice. Antimicrob. Agents Chemother. 2013, 57, 5138–5140. DOI: 10.1128/AAC.00918-13 PMID: 23856770
Lu, X.; Olsen, S. K.; Capili, A. D.; Cisar, J. S.; Lima, C. D.; Tan, D. S. Designed semisynthetic protein inhibitors of Ub/Ubl E1 activating enzymes. J. Am. Chem. Soc. 2010, 132, 1748–1749. DOI: 10.1021/ja9088549 PMID: 20099854
Cisar, J. S.; Tan, D. S. Small molecule inhibition of microbial natural product biosynthesis-an emerging antibiotic strategy. Chem Soc Rev 2008, 37, 1320–1329. DOI: 10.1039/b702780j PMID: 18568158
Cisar, J. S.; Ferreras, J. A.; Soni, R. K.; Quadri, L. E.; Tan, D. S. Exploiting ligand conformation in selective inhibition of non-ribosomal peptide synthetase amino acid adenylation with designed macrocyclic small molecules. J. Am. Chem. Soc. 2007, 129, 7752–7753. DOI: 10.1021/ja0721521 PMID: 17542590
Corwith, Kathryn Cohen, R.; Corwith, K.; Holowka, D.; Baird, B. Spatiotemporal resolution of mast cell granule exocytosis reveals correlation with Ca2+ wave initiation. J. Cell. Sci. 2012, 125, 2986–2994. DOI: 10.1242/jcs.102632 PMID: 22393234
Calloway, N.; Owens, T.; Corwith, K.; Rodgers, W.; Holowka, D.; Baird, B. Stimulated association of STIM1 and Orai1 is regulated by the balance of PtdIns(4,5)P₂ between distinct membrane pools. J. Cell. Sci. 2011, 124, 2602–2610. DOI: 10.1242/jcs.084178 PMID: 21750194
Das, Tandrila Peng, T.; Das, T.; Ding, K.; Hang, H. C. Functional analysis of protein post-translational modifications using genetic codon expansion. Protein Sci. 2023, 32, e4618. DOI: 10.1002/pro.4618 PMID: 36883310
Das, T.; Yang, X.; Lee, H.; Garst, E. H.; Valencia, E.; Chandran, K.; Im, W.; Hang, H. C. S-Palmitoylation and sterol interactions mediate antiviral specificity of IFITMs. ACS Chem. Biol. 2022, 17, 2109–2120. DOI: 10.1021/acschembio.2c00176 PMID: 35861660
Garst, E. H.; Das, T.; Hang, H. C. Chemical approaches for investigating site-specific protein S-fatty acylation. Curr. Opin. Chem. Biol. 2021, 65, 109–117. DOI: 10.1016/j.cbpa.2021.06.004 PMID: 34333222
Garst, E. H.; Lee, H.; Das, T.; Bhattacharya, S.; Percher, A.; Wiewiora, R.; Witte, I. P.; Li, Y.; Peng, T.; Im, W.; Hang, H. C. Site-specific lipidation enhances IFITM3 membrane interactions and antiviral activity. ACS Chem. Biol. 2021, 16, 844–856. DOI: 10.1021/acschembio.1c00013 PMID: 33887136
Das, T.; Yount, J. S.; Hang, H. C. Protein S-palmitoylation in immunity. Open Biol. 2021, 11, 200411. DOI: 10.1098/rsob.200411 PMID: 33653086
Wu, X.; Spence, J. S.; Das, T.; Yuan, X.; Chen, C.; Zhang, Y.; Li, Y.; Sun, Y.; Chandran, K.; Hang, H. C.; Peng, T. Site-specific photo-crosslinking proteomics reveal regulation of IFITM3 trafficking and turnover by VCP/p97 ATPase. Cell Chem. Biol. 2020, 27, 571-585.e6. DOI: 10.1016/j.chembiol.2020.03.004 PMID: 32243810
Spence, J. S.; He, R.; Hoffmann, H. H.; Das, T.; Thinon, E.; Rice, C. M.; Peng, T.; Chandran, K.; Hang, H. C. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat. Chem. Biol. 2019, 15, 259–268. DOI: 10.1038/s41589-018-0213-2 PMID: 30643282
Das, Ushati Chauleau, M.; Das, U.; Shuman, S. Effects of DNA3´pp5´G capping on 3´ end repair reactions and of an embedded pyrophosphate-linked guanylate on ribonucleotide surveillance. Nucleic Acids Res. 2015, 43, 3197–3207. DOI: 10.1093/nar/gkv179 PMID: 25753667
Das, U.; Wang, L. K.; Smith, P.; Munir, A.; Shuman, S. Structures of bacterial polynucleotide kinase in a Michaelis complex with nucleoside triphosphate (NTP)-Mg2+ and 5´-OH RNA and a mixed substrate-product complex with NTP-Mg2+ and a 5´-phosphorylated oligonucleotide. J. Bacteriol. 2014, 196, 4285–4292. DOI: 10.1128/JB.02197-14 PMID: 25266383
Das, U.; Chauleau, M.; Ordonez, H.; Shuman, S. Impact of DNA3´pp5´G capping on repair reactions at DNA 3´ ends. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 11317–11322. DOI: 10.1073/pnas.1409203111 PMID: 25049385
Das, U.; Chakravarty, A. K.; Remus, B. S.; Shuman, S. Rewriting the rules for end joining via enzymatic splicing of DNA 3´-PO4 and 5´-OH ends. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 20437–20442. DOI: 10.1073/pnas.1314289110 PMID: 24218597
Das, U.; Wang, L. K.; Smith, P.; Jacewicz, A.; Shuman, S. Structures of bacterial polynucleotide kinase in a Michaelis complex with GTP•Mg2+ and 5´-OH oligonucleotide and a product complex with GDP•Mg2+ and 5´-PO4 oligonucleotide reveal a mechanism of general acid-base catalysis and the determinants of phosphoacceptor recognition. Nucleic Acids Res. 2014, 42, 1152–1161. DOI: 10.1093/nar/gkt936 PMID: 24150947
Das, U.; Shuman, S. 2´-Phosphate cyclase activity of RtcA: a potential rationale for the operon organization of RtcA with an RNA repair ligase RtcB in Escherichia coli and other bacterial taxa. RNA 2013, 19, 1355–1362. DOI: 10.1261/rna.039917.113 PMID: 23945037
Das, U.; Wang, L. K.; Smith, P.; Shuman, S. Structural and biochemical analysis of the phosphate donor specificity of the polynucleotide kinase component of the bacterial pnkp•hen1 RNA repair system. Biochemistry 2013, 52, 4734–4743. DOI: 10.1021/bi400412x PMID: 23721485
Das, U.; Shuman, S. Mechanism of RNA 2´,3´-cyclic phosphate end healing by T4 polynucleotide kinase-phosphatase. Nucleic Acids Res. 2012, 41, 355–365. DOI: 10.1093/nar/gks977 PMID: 23118482
Wang, L. K.; Das, U.; Smith, P.; Shuman, S. Structure and mechanism of the polynucleotide kinase component of the bacterial Pnkp-Hen1 RNA repair system. RNA 2012, 18, 2277–2286. DOI: 10.1261/rna.036061.112 PMID: 23118415
Das, U.; Smith, P.; Shuman, S. Structural insights to the metal specificity of an archaeal member of the LigD 3´-phosphoesterase DNA repair enzyme family. Nucleic Acids Res. 2012, 40, 828–836. DOI: 10.1093/nar/gkr767 PMID: 21965539
Smith, P.; Nair, P. A.; Das, U.; Zhu, H.; Shuman, S. Structures and activities of archaeal members of the LigD 3´-phosphoesterase DNA repair enzyme superfamily. Nucleic Acids Res. 2011, 39, 3310–3320. DOI: 10.1093/nar/gkq1163 PMID: 21208981
Dave, Richa Geggier, P.; Dave, R.; Feldman, M. B.; Terry, D. S.; Altman, R. B.; Munro, J. B.; Blanchard, S. C. Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome. J. Mol. Biol. 2010, 399, 576–595. DOI: 10.1016/j.jmb.2010.04.038 PMID: 20434456
Dave, R.; Terry, D. S.; Munro, J. B.; Blanchard, S. C. Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophys. J. 2009, 96, 2371–2381. DOI: 10.1016/j.bpj.2008.11.061 PMID: 19289062
Blanchard, S. C.; Altman, R. B.; Geggier, P.; Munro, J. B.; Dave, R.; Feldman, M. B.; Terry, D. S. Single-molecule studies of biomolecules. In Wiley Encyclopedia of Chemical Biology, Begley T. P., Ed. Wiley: New York, 2008; Vol. 4, pp 1–16. DOI: 10.1002/9780470048672.wecb540
DeGrasse, Jeff DeGrasse, J. A.; DuBois, K. N.; Devos, D.; Siegel, T. N.; Sali, A.; Field, M. C.; Rout, M. P.; Chait, B. T. Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell Proteomics 2009, 8, 2119–2130. DOI: 10.1074/mcp.M900038-MCP200 PMID: 19525551
Fenyo, D.; Wang, Q.; DeGrasse, J. A.; Padovan, J. C.; Cadene, M.; Chait, B. T. MALDI sample preparation: the ultra thin layer method. J. Vis. Exp. 2007, e192. DOI: 10.3791/192 PMID: 18978997
DeGrasse, J. A.; Chait, B. T.; Field, M. C.; Rout, M. P. High-yield isolation and subcellular proteomic characterization of nuclear and subnuclear structures from trypanosomes. Methods Mol. Biol. 2008, 463, 77–92. DOI: 10.1007/978-1-59745-406-3_6 PMID: 18951162
Oeffinger, M.; Wei, K. E.; Rogers, R.; DeGrasse, J. A.; Chait, B. T.; Aitchison, J. D.; Rout, M. P. Comprehensive analysis of diverse ribonucleoprotein complexes. Nat. Methods 2007, 4, 951–956. DOI: 10.1038/nmeth1101 PMID: 17922018
Tackett, A. J.; DeGrasse, J. A.; Sekedat, M. D.; Oeffinger, M.; Rout, M. P.; Chait, B. T. I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J. Proteome Res. 2005, 4, 1752–1756. DOI: 10.1021/pr050225e PMID: 16212429
Dossa, Paul Tsou, L. K.; Lara-Tejero, M.; RoseFigura, J.; Zhang, Z. J.; Wang, Y. C.; Yount, J. S.; Lefebre, M.; Dossa, P. D.; Kato, J.; Guan, F.; Lam, W.; Cheng, Y. C.; Galán, J. E.; Hang, H. C. Antibacterial flavonoids from medicinal plants covalently inactivate Type III protein secretion substrates. J. Am. Chem. Soc. 2016, 138, 2209–2218. DOI: 10.1021/jacs.5b11575 PMID: 26847396
Tsou, L. K.; Dossa, P. D.; Hang, H. C. Small molecules aimed at type III secretion systems to inhibit bacterial virulence. MedChemComm 2013, 4, 68–79. DOI: 10.1039/C2MD20213A PMID: 23930198
Grammel, M.; Dossa, P. D.; Taylor-Salmon, E.; Hang, H. C. Cell-selective labeling of bacterial proteomes with an orthogonal phenylalanine amino acid reporter. Chem. Commun. (Camb.) 2012, 48, 1473–1474. DOI: 10.1039/c1cc14939c PMID: 22080199
Yount, J. S.; Tsou, L. K.; Dossa, P. D.; Kullas, A. L.; van der Velden, A. W.; Hang, H. C. Visible fluorescence detection of type III protein secretion from bacterial pathogens. J. Am. Chem. Soc. 2010, 132, 8244–8245. DOI: 10.1021/ja102257v PMID: 20504019
Dottore, Alejandro Hsia, K. C.; Wilson-Kubalek, E. M.; Dottore, A.; Hao, Q.; Tsai, K. L.; Forth, S.; Shimamoto, Y.; Milligan, R. A.; Kapoor, T. M. Reconstitution of the augmin complex provides insights into its architecture and function. Nat. Cell Biol. 2014, 16, 852–863. DOI: 10.1038/ncb3030 PMID: 25173975
Ferguson, Angelica Juette, M. F.†; Carelli, J. D.†; Rundlet, E. J.†; Brown, A.; Shao, S.; Ferguson, A.; Wasserman, M. R.; Holm, M.; Taunton, J.; Blanchard, S. C. Didemnin B and ternatin-4 differentially inhibit conformational changes in eEF1A required for aminoacyl-tRNA accommodation into mammalian ribosomes. eLife 2022, 11, e81608. DOI: 10.7554/eLife.81608 PMID: 36264623
Prokhorova, I.; Altman, R. B.; Djumagulov, M.; Shrestha, J. P.; Urzhumtsev, A.; Ferguson, A.; Chang, C. T.; Yusupov, M.; Blanchard, S. C.; Yusupova, G. Aminoglycoside interactions and impacts on the eukaryotic ribosome. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E10899-E10908. DOI: 10.1073/pnas.1715501114 PMID: 29208708
Ferguson, A.; Wang, L.; Altman, R. B.; Terry, D. S.; Juette, M. F.; Burnett, B. J.; Alejo, J. L.; Dass, R. A.; Parks, M. M.; Vincent, C. T.; Blanchard, S. C. Functional dynamics within the human ribosome regulate the rate of active protein synthesis. Mol. Cell 2015, 60, 475–486. DOI: 10.1016/j.molcel.2015.09.013 PMID: 26593721
Burnett, B. J.; Altman, R. B.; Ferguson, A.; Wasserman, M. R.; Zhou, Z.; Blanchard, S. C. Direct evidence of an elongation factor-Tu/Ts·GTP·aminoacyl-tRNA quaternary complex. J. Biol. Chem. 2014, 289, 23917–23927. DOI: 10.1074/jbc.M114.583385 PMID: 24990941
French, Jarrod French, J. B.; Begley, T. P.; Ealick, S. E. Structure of trifunctional THI20 from yeast. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 784–791. DOI: 10.1107/S0907444911024814 PMID: 21904031
French, J. B.; Ealick, S. E. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 671–677. DOI: 10.1107/S090744491101746X PMID: 21795808
French, J. B.; Neau, D. B.; Ealick, S. E. Characterization of the structure and function of Klebsiella pneumoniae allantoin racemase. J. Mol. Biol. 2011, 410, 447–460. DOI: 10.1016/j.jmb.2011.05.016 PMID: 21616082
French, J. B.; Yates, P. A.; Soysa, D. R.; Boitz, J. M.; Carter, N. S.; Chang, B.; Ullman, B.; Ealick, S. E. The Leishmania donovani UMP synthase is essential for promastigote viability and has an unusual tetrameric structure that exhibits substrate-controlled oligomerization. J. Biol. Chem. 2011, 286, 20930–20941. DOI: 10.1074/jbc.M111.228213 PMID: 21507942
French, J. B.; Cen, Y.; Vrablik, T. L.; Xu, P.; Allen, E.; Hanna-Rose, W.; Sauve, A. A. Characterization of nicotinamidases: steady state kinetic parameters, classwide inhibition by nicotinaldehydes, and catalytic mechanism. Biochemistry 2010, 49, 10421–10439. DOI: 10.1021/bi1012518 PMID: 20979384
French, J. B.; Cen, Y.; Sauve, A. A.; Ealick, S. E. High-resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into the catalytic mechanism and inhibition by aldehydes . Biochemistry 2010, 49, 8803–8812. DOI: 10.1021/bi1012436 PMID: 20853856
French, J. B.; Ealick, S. E. Structural and mechanistic studies on Klebsiella pneumoniae 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. J. Biol. Chem. 2010, 285, 35446–35454. DOI: 10.1074/jbc.M110.156034 PMID: 20826786
French, J. B.; Ealick, S. E. Biochemical and structural characterization of a ureidoglycine aminotransferase in the Klebsiella pneumoniae uric acid catabolic pathway. Biochemistry 2010, 49, 5975–5977. DOI: 10.1021/bi1006755 PMID: 20565126
French, J. B.; Cen, Y.; Sauve, A. A. Plasmodium falciparum Sir2 is an NAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase. Biochemistry 2008, 47, 10227–10239. DOI: 10.1021/bi800767t PMID: 18729382
Garst, Emma Das, T.; Yang, X.; Lee, H.; Garst, E. H.; Valencia, E.; Chandran, K.; Im, W.; Hang, H. C. S-Palmitoylation and sterol interactions mediate antiviral specificity of IFITMs. ACS Chem. Biol. 2022, 17, 2109–2120. DOI: 10.1021/acschembio.2c00176 PMID: 35861660
Garst, E. H.; Das, T.; Hang, H. C. Chemical approaches for investigating site-specific protein S-fatty acylation. Curr. Opin. Chem. Biol. 2021, 65, 109–117. DOI: 10.1016/j.cbpa.2021.06.004 PMID: 34333222
Garst, E. H.; Lee, H.; Das, T.; Bhattacharya, S.; Percher, A.; Wiewiora, R.; Witte, I. P.; Li, Y.; Peng, T.; Im, W.; Hang, H. C. Site-specific lipidation enhances IFITM3 membrane interactions and antiviral activity. ACS Chem. Biol. 2021, 16, 844–856. DOI: 10.1021/acschembio.1c00013 PMID: 33887136
George Cisar, Elizabeth George, E. A.; Novick, R. P.; Muir, T. W. Cyclic peptide inhibitors of staphylococcal virulence prepared by Fmoc-based thiolactone peptide synthesis. J. Am. Chem. Soc. 2008, 130, 4914–4924. DOI: 10.1021/ja711126e PMID: 18335939
Geisinger, E.; George, E. A.; Chen, J.; Muir, T. W.; Novick, R. P. Identification of ligand specificity determinants in AgrC, the Staphylococcus aureus quorum-sensing receptor. J. Biol. Chem. 2008, 283, 8930–8938. DOI: 10.1074/jbc.M710227200 PMID: 18222919
George, E. A.; Muir, T. W. Molecular mechanisms of agr quorum sensing in virulent staphylococci. ChemBioChem 2007, 8, 847–855. DOI: 10.1002/cbic.200700023 PMID: 17457814
Simoneau, C. A.; George, E. A.; Ganem, B. A new approach to four-and five-component Ugi condensations starting from nitriles. Tetrahedron Lett. 2006, 47, 1205–1207. DOI: 10.1016/j.tetlet.2005.12.011
Wright, J. S.; Lyon, G. J.; George, E. A.; Muir, T. W.; Novick, R. P. Hydrophobic interactions drive ligand-receptor recognition for activation and inhibition of staphylococcal quorum sensing. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 16168–16173. DOI: 10.1073/pnas.0404039101 PMID: 15528279
Gerstberger, Stefanie Meyer, C.; Garzia, A.; Mazzola, M.; Gerstberger, S.; Molina, H.; Tuschl, T. The TIA1 RNA-binding protein family regulates EIF2AK2-mediated stress response and cell cycle progression. Mol. Cell 2018, 69, 622–635. DOI: 10.1016/j.molcel.2018.01.011 PMID: 29429924
Gerstberger, S.; Meyer, C.; Benjamin-Hong, S.; Rodriguez, J.; Briskin, D.; Bognanni, C.; Bogardus, K.; Steller, H.; Tuschl, T. The conserved RNA exonuclease Rexo5 is required for 3´ end maturation of 28S rRNA, 5S rRNA, and snoRNAs. Cell Rep. 2017, 21, 758–772. DOI: 10.1016/j.celrep.2017.09.067 PMID: 29045842
Mobin, M. B.; Gerstberger, S.; Teupser, D.; Campana, B.; Charisse, K.; Heim, M. H.; Manoharan, M.; Tuschl, T.; Stoffel, M. The RNA-binding protein vigilin regulates VLDL secretion through modulation of Apob mRNA translation. Nat. Commun. 2016, 7, 12848. DOI: 10.1038/ncomms12848 PMID: 27665711
Gerstberger, S.; Hafner, M.; Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 2014, 15, 829–845. DOI: 10.1038/nrg3813 PMID: 25365966
Gerstberger, S.; Hafner, M.; Ascano, M.; Tuschl, T. Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. Adv. Exp. Med. Biol. 2014, 825, 1–55. DOI: 10.1007/978-1-4939-1221-6_1 PMID: 25201102
Farazi, T. A.; Leonhardt, C. S.; Mukherjee, N.; Mihailovic, A.; Li, S.; Max, K. E.; Meyer, C.; Yamaji, M.; Cekan, P.; Jacobs, N. C.; Gerstberger, S.; Bognanni, C.; Larsson, E.; Ohler, U.; Tuschl, T. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets. RNA 2014, 20, 1090–1102. DOI: 10.1261/rna.045005.114 PMID: 24860013
Gerstberger, S.; Hafner, M.; Tuschl, T. Learning the language of post-transcriptional gene regulation. Genome Biol. 2013, 14, 130. DOI: 10.1186/gb-2013-14-8-130 PMID: 23998708
Hafner, M.; Max, K. E.; Bandaru, P.; Morozov, P.; Gerstberger, S.; Brown, M.; Molina, H.; Tuschl, T. Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition. RNA 2013, 19, 613–626. DOI: 10.1261/rna.036491.112 PMID: 23481595
Ascano, M.; Gerstberger, S.; Tuschl, T. Multi-disciplinary methods to define RNA-protein interactions and regulatory networks. Curr. Opin. Genet. Dev. 2013, 23, 20–28. DOI: 10.1016/j.gde.2013.01.003S0959-437X(13)00011-7 PMID: 23453689
Ascano, M.; Hafner, M.; Cekan, P.; Gerstberger, S.; Tuschl, T. Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip. Rev. RNA 2012, 3, 159–177. DOI: 10.1002/wrna.1103 PMID: 22213601
Greimann, Jaclyn Flynt, A. S.; Greimann, J. C.; Chung, W. J.; Lima, C. D.; Lai, E. C. MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. Mol. Cell 2010, 38, 900–907. DOI: 10.1016/j.molcel.2010.06.014 PMID: 20620959
Greimann, J. C.; Lima, C. D. Reconstitution of RNA exosomes from human and Saccharomyces cerevisiae cloning, expression, purification, and activity assays. Meth. Enzymol. 2008, 448, 185–210. DOI: 10.1016/S0076-6879(08)02610-4 PMID: 19111177
Liu, Q.; Greimann, J. C.; Lima, C. D. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 2006, 127, 1223–1237. DOI: 10.1016/j.cell.2006.10.037 PMID: 17174896
Grunbeck, Amy Valentin-Hansen, L.; Park, M.; Huber, T.; Grunbeck, A.; Naganathan, S.; Schwartz, T. W.; Sakmar, T. P. Mapping substance P binding sites on the neurokinin-1 receptor using genetic incorporation of a photoreactive amino acid. J. Biol. Chem. 2014, 289, 18045–18054. DOI: 10.1074/jbc.M113.527085 PMID: 24831006
Grunbeck, A.; Sakmar, T. P. Probing G protein-coupled receptor-ligand interactions with targeted photoactivatable cross-linkers. Biochemistry 2013, 52, 8625–8632. DOI: 10.1021/bi401300y PMID: 24199838
Naganathan, S.; Grunbeck, A.; Tian, H.; Huber, T.; Sakmar, T. P. Genetically-encoded molecular probes to study G protein-coupled receptors. J. Vis. Exp. 2013, e50588. DOI: 10.3791/50588 PMID: 24056801
Berro, R.; Yasmeen, A.; Abrol, R.; Trzaskowski, B.; Abi-Habib, S.; Grunbeck, A.; Lascano, D.; Goddard, W. A.; Klasse, P. J.; Sakmar, T. P.; Moore, J. P. Use of G-protein-coupled and -uncoupled CCR5 receptors by CCR5 inhibitor-resistant and -sensitive human immunodeficiency virus type 1 variants. J. Virol. 2013, 87, 6569–6581. DOI: 10.1128/JVI.00099-13 PMID: 23468486
Grunbeck, A.; Huber, T.; Sakmar, T. P. Mapping a ligand binding site using genetically encoded photoactivatable crosslinkers. Meth. Enzymol. 2013, 520, 307–322. DOI: 10.1016/B978-0-12-391861-1.00014-9B978-0-12-391861-1.00014-9 PMID: 23332706
Grunbeck, A.; Huber, T.; Abrol, R.; Trzaskowski, B.; Goddard, W. A.; Sakmar, T. P. Genetically encoded photo-cross-linkers map the binding site of an allosteric drug on a G protein-coupled receptor. ACS Chem. Biol. 2012, 7, 967–972. DOI: 10.1021/cb300059z PMID: 22455376
Janz, J. M.; Ren, Y.; Looby, R.; Kazmi, M. A.; Sachdev, P.; Grunbeck, A.; Haggis, L.; Chinnapen, D.; Lin, A. Y.; Seibert, C.; McMurry, T.; Carlson, K. E.; Muir, T. W.; Hunt, S.; Sakmar, T. P. Direct interaction between an allosteric agonist pepducin and the chemokine receptor CXCR4. J. Am. Chem. Soc. 2011, 133, 15878–15881. DOI: 10.1021/ja206661w PMID: 21905700
Grunbeck, A.; Huber, T.; Sachdev, P.; Sakmar, T. P. Mapping the ligand-binding site on a G protein-coupled receptor (GPCR) using genetically encoded photocrosslinkers. Biochemistry 2011, 50, 3411–3413. DOI: 10.1021/bi200214r PMID: 21417335
Knepp, A. M.; Grunbeck, A.; Banerjee, S.; Sakmar, T. P.; Huber, T. Direct measurement of thermal stability of expressed CCR5 and stabilization by small molecule ligands. Biochemistry 2011, 50, 502–511. DOI: 10.1021/bi101059w PMID: 21155586
Guo, Han Su, H.; Jiang, M.; Senevirathne, C.; Aluri, S.; Zhang, T.; Guo, H.; Xavier-Ferrucio, J.; Jin, S.; Tran, N. T.; Liu, S. M.; Sun, C. W.; Zhu, Y.; Zhao, Q.; Chen, Y.; Cable, L.; Shen, Y.; Liu, J.; Qu, C. K.; Han, X.; Klug, C. A.; Bhatia, R.; Chen, Y.; Nimer, S. D.; Zheng, Y. G.; Iancu-Rubin, C.; Jin, J.; Deng, H.; Krause, D. S.; Xiang, J.; Verma, A.; Luo, M.; Zhao, X. Methylation of dual-specificity phosphatase 4 controls cell differentiation. Cell Rep. 2021, 36, 109421. DOI: 10.1016/j.celrep.2021.109421 PMID: 34320342
Guo, H.; Wang, R.; Zheng, W.; Chen, Y.; Blum, G.; Deng, H.; Luo, M. Profiling substrates of protein arginine N-methyltransferase 3 with S-adenosyl-L-methionine analogues. ACS Chem. Biol. 2014, 9, 476–484. DOI: 10.1021/cb4008259 PMID: 24320160
Hann, Zachary Kochańczyk, T.; Hann, Z. S.; Lux, M. C.; Delos Reyes, A. M. V.; Ji, C.; Tan, D. S.; Lima, C. D. Structural basis for transthiolation intermediates in the ubiquitin pathway. Nature 2024, 633, 216–223. DOI: 10.1038/s41586-024-07828-9 PMID: 39143218
Delos Reyes, A. M. V.†; Lux, M. C.†; Hann, Z. S.†; Ji, C.; Kochańczyk, T.; DiBello, M.; Lima, C. D.; Tan, D. S. Design and semisynthesis of biselectrophile-functionalized ubiquitin probes to investigate transthioesterification reactions. Org. Lett. 2024, 26, 4594–4599. DOI: 10.1021/acs.orglett.4c01102 PMID: 38781175
Hann, Z. S.; Metzger, M. B.; Weissman, A. M.; Lima, C. D. Crystal structure of the Schizosaccharomyces pombe U7BR E2-binding region in complex with Ubc7. Acta Crystallogr. F Struct. Biol. Commun. 2019, 75, 552–560. DOI: 10.1107/S2053230X19009786 PMID: 31397327
Hann, Z. S.; Ji, C.; Olsen, S. K.; Lu, X.; Lux, M. C.; Tan, D. S.; Lima, C. D. Structural basis for adenylation and thioester bond formation in the ubiquitin E1. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 15475–15484. DOI: 10.1073/pnas.1905488116 PMID: 31235585
Harbison, Nicholas Harbison, N. W.; Bhattacharya, S.; Eliezer, D. Assigning backbone NMR resonances for full length tau isoforms: efficient compromise between manual assignments and reduced dimensionality. PLoS ONE 2012, 7, e34679. DOI: 10.1371/journal.pone.0034679 PMID: 22529924
Harper, Nathan Harper, N. J.†; Burnside, C.†; Klinge, S. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature 2023, 614, 175–181. DOI: 10.1038/s41586-022-05621-0 PMID: 36482135
Hauver, Jesse Park, S. R.; Hauver, J.; Zhang, Y.; Revyakin, A.; Coleman, R. A.; Tjian, R.; Chu, S.; Pertsinidis, A. A single-molecule surface-based platform to detect the assembly and function of the human RNA polymerase II transcription machinery. Structure 2020, 28, 1337–1343. DOI: 10.1016/j.str.2020.07.009 PMID: 32763141
Braffman, N. R.; Piscotta, F. J.; Hauver, J.; Campbell, E. A.; Link, A. J.; Darst, S. A. Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 1273–1278. DOI: 10.1073/pnas.1817352116 PMID: 30626643
Feklistov, A.; Bae, B.; Hauver, J.; Lass-Napiorkowska, A.; Kalesse, M.; Glaus, F.; Altmann, K. H.; Heyduk, T.; Landick, R.; Darst, S. A. RNA polymerase motions during promoter melting. Science 2017, 356, 863–866. DOI: 10.1126/science.aam7858 PMID: 28546214
Wang, G.; Hauver, J.; Thomas, Z.; Darst, S. A.; Pertsinidis, A. Single-molecule real-time 3D imaging of the transcription cycle by modulation interferometry. Cell 2016, 167, 1839–1852. DOI: 10.1016/j.cell.2016.11.032 PMID: 27984731
Hazra, Amrita Hazra, A. B.; Han, A. W.; Mehta, A. P.; Mok, K. C.; Osadchiy, V.; Begley, T. P.; Taga, M. E. Anaerobic biosynthesis of the lower ligand of vitamin B₁₂. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 10792–10797. DOI: 10.1073/pnas.1509132112 PMID: 26246619
Mehta, A. P.; Abdelwahed, S. H.; Fenwick, M. K.; Hazra, A. B.; Taga, M. E.; Zhang, Y.; Ealick, S. E.; Begley, T. P. Anaerobic 5-hydroxybenzimidazole formation from aminoimidazole ribotide: An unanticipated intersection of thiamin and vitamin B₁₂ biosynthesis. J. Am. Chem. Soc. 2015, 137, 10444–10447. DOI: 10.1021/jacs.5b03576 PMID: 26237670
Lai, R. Y.; Huang, S.; Fenwick, M. K.; Hazra, A.; Zhang, Y.; Rajashankar, K.; Philmus, B.; Kinsland, C.; Sanders, J. M.; Ealick, S. E.; Begley, T. P. Thiamin pyrimidine biosynthesis in Candida albicans: A remarkable reaction between histidine and pyridoxal phosphate. J. Am. Chem. Soc. 2012, 134, 9157–9159. DOI: 10.1021/ja302474a PMID: 22568620
Hazra, A. B.; Han, Y.; Chatterjee, A.; Zhang, Y.; Lai, R. Y.; Ealick, S. E.; Begley, T. P. A missing enzyme in thiamin thiazole biosynthesis: identification of TenI as a thiazole tautomerase. J. Am. Chem. Soc. 2011, 133, 9311–9319. DOI: 10.1021/ja1110514 PMID: 21534620
Chatterjee, A.; Hazra, A. B.; Abdelwahed, S.; Hilmey, D. G.; Begley, T. P. A “radical dance” in thiamin biosynthesis: mechanistic analysis of the bacterial hydroxymethylpyrimidine phosphate synthase. Angew. Chem. Int. Ed. Engl. 2010, 49, 8653–8656. DOI: 10.1002/anie.201003419 PMID: 20886485
Hazra, A.; Chatterjee, A.; Begley, T. P. Biosynthesis of the thiamin thiazole in Bacillus subtilis: Identification of the product of the thiazole synthase-catalyzed reaction. J. Am. Chem. Soc. 2009, 131, 3225–3229. DOI: 10.1021/ja806752h PMID: 19216519
Begley, T. P.; Chatterjee, A.; Hanes, J. W.; Hazra, A.; Ealick, S. E. Cofactor biosynthesis – Still yielding fascinating new biological chemistry. Curr. Opin. Chem. Biol. 2008, 12, 118–125. DOI: 10.1016/j.cbpa.2008.02.006 PMID: 18314013
Hazra, A.; Chatterjee, A.; Chatterjee. D.; Hilmey, D. G.; Sanders, J. M.; Hanes, J. W.; Krishnamoorthy. K.; McCulloch, K. M.; Waitner, M. J.; O’Leary, S.; Begley, T. P.; Snider, M. J. Coenzyme and prosthetic group biosynthesis. In Encyclopedia of Microbiology; 3rd Ed. Schaechter, M., Ed. Elsevier: Oxford, 2009; pp 79–88. DOI: 10.1016/B978-012373944-5.00069-9
Hebert, Jakob Wortzel, I.; Seo, Y.; Akano, I.; Shaashua, L.; Tobias, G. C.; Hebert, J.; Kim, K. A.; Kim, D.; Dror, S.; Liu, Y.; Azrak, G. C.; Cioffi, M.; Johnson, K. E.; Hennika, T.; Twerski, M. Z.; Kushner, A.; Math, R.; Han, Y. D.; Han, D. H.; Jung, M.; Park, J.; Paik, S.; Shin, J. S.; Lee, M. G.; Russo, M. V.; Zakheim, D.; Barnes, J.; Mehta, S.; Manova, K.; Schwartz, R. E.; Thakur, B. K.; Boudreau, N.; Matei, I.; Zhang, H.; Sidoli, S.; Bromberg, J.; David, Y.; Kim, H. S.; Lyden, D. Unique structural configuration of EV-DNA primes Kupffer cell-mediated antitumor immunity to prevent metastatic progression. Nat. Cancer 2024, in press. DOI: 10.1038/s43018-024-00862-6 PMID: 39627554
Tiedemann, R. L.; Hrit, J.; Du, Q.; Wiseman, A. K.; Eden, H. E.; Dickson, B. M.; Kong, X.; Chomiak, A. A.; Vaughan, R. M.; Tibben, B. M.; Hebert, J. M.; David, Y.; Zhou, W.; Baylin, S. B.; Jones, P. A.; Clark, S. J.; Rothbart, S. B. UHRF1 ubiquitin ligase activity supports the maintenance of low-density CpG methylation. Nucleic Acids Res. 2024, in press. DOI: 10.1093/nar/gkae1105 PMID: 39607687
Sheban, D.; Shani, T.; Maor, R.; Aguilera-Castrejon, A.; Mor, N.; Oldak, B.; Shmueli, M. D.; Eisenberg-Lerner, A.; Bayerl, J.; Hebert, J.; Viukov, S.; Chen, G.; Kacen, A.; Krupalnik, V.; Chugaeva, V.; Tarazi, S.; Rodríguez-delaRosa, A.; Zerbib, M.; Ulman, A.; Masarwi, S.; Kupervaser, M.; Levin, Y.; Shema, E.; David, Y.; Novershtern, N.; Hanna, J. H.; Merbl, Y. SUMOylation of linker histone H1 drives chromatin condensation and restriction of embryonic cell fate identity. Mol. Cell 2022, 82, 106–122. DOI: 10.1016/j.molcel.2021.11.011 PMID: 34875212
Osunsade, A.; Prescott, N. A.; Hebert, J. M.; Ray, D. M.; Jmeian, Y.; Lorenz, I. C.; David, Y. A robust method for the purification and characterization of recombinant human histone H1 variants. Biochemistry 2019, 58, 171–176. DOI: 10.1021/acs.biochem.8b01060 PMID: 30585724
Hekstra, Doeke Hekstra, D. R.; Cocco, S.; Monasson, R.; Leibler, S. Trend and fluctuations: Analysis and design of population dynamics measurements in replicate ecosystems. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2013, 88, 062714. PMID: 24483493
Hekstra, D. R.; Leibler, S. Contingency and statistical laws in replicate microbial closed ecosystems. Cell 2012, 149, 1164–1173. DOI: 10.1016/j.cell.2012.03.040 PMID: 22632978
Frentz, Z.; Kuehn, S.; Hekstra, D.; Leibler, S. Microbial population dynamics by digital in-line holographic microscopy. Rev. Sci. Instrum. 2010, 81, 084301. DOI: 10.1063/1.3473937 PMID: 20815617
Siegel, T. N.; Hekstra, D. R.; Wang, X.; Dewell, S.; Cross, G. A. Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res. 2010, 38, 4946–4957. DOI: 10.1093/nar/gkq237 PMID: 20385579
Siegel, T. N.; Hekstra, D. R.; Kemp, L. E.; Figueiredo, L. M.; Lowell, J. E.; Fenyo, D.; Wang, X.; Dewell, S.; Cross, G. A. Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev. 2009, 23, 1063–1076. DOI: 10.1101/gad.1790409 PMID: 19369410
Siegel, T. N.; Hekstra, D. R.; Cross, G. A. Analysis of the Trypanosoma brucei cell cycle by quantitative DAPI imaging. Mol. Biochem. Parasitol. 2008, 160, 171–174. DOI: 10.1016/j.molbiopara.2008.04.004 PMID: 18501977
Hekstra, D.; Taussig, A. R.; Magnasco, M.; Naef, F. Absolute mRNA concentrations from sequence-specific calibration of oligonucleotide arrays. Nucleic Acids Res. 2003, 31, 1962–1968. PMID: 12655013
Hiotis, Giorgos Yang, S.†; Hiotis, G.†; Wang, Y.; Chen, J.; Wang, J. H.; Kim, M.; Reinherz, E. L.; Walz, T. Dynamic HIV-1 spike motion creates vulnerability for its membrane-bound tripod to antibody attack. Nat. Commun. 2022, 13, 6393. DOI: 10.1038/s41467-022-34008-y PMID: 36302771
Hsiao, J. C.; Neugroschl, A. R.; Chui, A. J.; Taabazuing, C. Y.; Griswold, A. R.; Wang, Q.; Huang, H. C.; Orth-He, E. L.; Ball, D. P.; Hiotis, G.; Bachovchin, D. A. A ubiquitin-independent proteasome pathway controls activation of the CARD8 inflammasome. J Biol Chem 2022, 298, 102032. DOI: 10.1016/j.jbc.2022.102032 PMID: 35580636
Horioka-Duplix, Mizuho Huber, T.; Horioka-Duplix, M.; Chen, Y.; Saca, V. R.; Ceraudo, E.; Chen, Y.; Sakmar, T. P. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci. Signal. 2024, 17, eadp3967. DOI: 10.1126/scisignal.adp3967 PMID: 39288219
Mattheisen, J. M.†; Rasmussen, V. A.†; Ceraudo, E.; Kolodzinski, A.; Horioka-Duplix, M.; Sakmar, T. P.; Huber, T. Application of bioluminescence resonance energy transfer to quantitate cell-surface expression of membrane proteins. Anal. Biochem. 2024, 684, 115361. DOI: 10.1016/j.ab.2023.115361 PMID: 37865268
Kotliar, I. B.; Ceraudo, E.; Kemelmakher-Liben, K.; Oren, D. A.; Lorenzen, E.; Dodig-Crnković, T.; Horioka-Duplix, M.; Huber, T.; Schwenk, J. M.; Sakmar, T. P. Itch receptor MRGPRX4 interacts with the receptor activity-modifying proteins. J. Biol. Chem. 2023, 299, 104664. DOI: 10.1016/j.jbc.2023.104664 PMID: 37003505
Ceraudo, E.†; Horioka, M.†; Mattheisen, J. M.; Hitchman, T. D.; Moore, A. R.; Kazmi, M. A.; Chi, P.; Chen, Y.; Sakmar, T. P.; Huber, T. Direct evidence that the GPCR CysLTR2 mutant causative of uveal melanoma is constitutively active with highly biased signaling. J. Biol. Chem. 2021, 296, 100163. DOI: 10.1074/jbc.RA120.015352 PMID: 33288675
Horioka, M.; Ceraudo, E.; Lorenzen, E.; Sakmar, T. P.; Huber, T. Purinergic receptors crosstalk with CCR5 to amplify Ca2+ signaling. Cell. Mol. Neurobiol. 2020, 41, 1085–1101. DOI: 10.1007/s10571-020-01002-1 PMID: 33216235
Horioka, M.; Huber, T.; Sakmar, T. P. Playing tag with your favorite GPCR using CRISPR. Cell Chem. Biol. 2020, 27, 642–644. DOI: 10.1016/j.chembiol.2020.06.001 PMID: 32559501
Rico, C. A.; Berchiche, Y. A.; Horioka, M.; Peeler, J. C.; Lorenzen, E.; Tian, H.; Kazmi, M. A.; Fürstenberg, A.; Gaertner, H.; Hartley, O.; Sakmar, T. P.; Huber, T. High-affinity binding of chemokine analogs that display ligand bias at the HIV-1 coreceptor CCR5. Biophys. J. 2019, 117, 903–919. DOI: 10.1016/j.bpj.2019.07.043 PMID: 31421836
Hou, Qian Hagen, T.; Litke, J. L.; Nasir, N.; Hou, Q.; Jaffrey, S. R. Engineering acyclovir-induced RNA nanodevices for reversible and tunable control of aptamer function. Cell Chem. Biol. 2024, 31, 1827–1838. DOI: 10.1016/j.chembiol.2024.07.017 PMID: 39191249
Hou, Q.; Jaffrey, S. R. Synthetic biology tools to promote the folding and function of RNA aptamers in mammalian cells. RNA Biol. 2023, 20, 198–206. DOI: 10.1080/15476286.2023.2206248 PMID: 37129556
Hsieh, Chun-Cheng Chua, G. N. L.*; Vandana, J. J.*; Hsieh, C. C.* Students’ perspective on scientific training. ChemBioChem 2023, 24, e202300054. DOI: 10.1002/cbic.202300054 PMID: 37098995
Huang, Hsin-Che Tsamouri, L. P.; Hsiao, J. C.; Wang, Q.; Geeson, M. B.; Huang, H. C.; Nambiar, D. R.; Zou, M.; Ball, D. P.; Chui, A. J.; Bachovchin, D. A. The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation. Cell Chem. Biol. 2024, 31, 1699–1713. DOI: 10.1016/j.chembiol.2024.06.004 PMID: 38991619
Prescott, N. A.*; Huang, H. C.* Scientific fluency as the greatest strength of chemical biologists. ChemBioChem 2023, 24, e202300053. DOI: 10.1002/cbic.202300053 PMID: 36929107
Chen, Q.; Wang, A.; Covelli, D. J.; Bhattacharjee, A.; Wang, Q.; Orth-He, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Hsiao, J. C.; Bachovchin, D. A. Optimized M24B aminopeptidase inhibitors for CARD8 inflammasome activation. J. Med. Chem. 2023, 66, 2589–2607. DOI: 10.1021/acs.jmedchem.2c01535 PMID: 36724486
Orth-He, E. L.†; Huang, H. C.†; Rao, S. D.; Wang, Q.; Chen, Q.; O’Mara, C. M.; Chui, A. J.; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Cross, J. R.; Bachovchin, D. A. Protein folding stress potentiates NLRP1 and CARD8 inflammasome activation. Cell Rep. 2023, 42, 111965. DOI: 10.1016/j.celrep.2022.111965 PMID: 36649711
Wang, Q.; Hsiao, J. C.; Yardeny, N.; Huang, H. C.; O’Mara, C. M.; Orth-He, E. L.; Ball, D. P.; Zhang, Z.; Bachovchin, D. A. The NLRP1 and CARD8 inflammasomes detect reductive stress. Cell Rep. 2023, 42, 111966. DOI: 10.1016/j.celrep.2022.111966 PMID: 36649710
Ball, D. P.; Tsamouri, L. P.; Wang, A. E.; Huang, H. C.; Warren, C. D.; Wang, Q.; Edmondson, I. H.; Griswold, A. R.; Rao, S. D.; Johnson, D. C.; Bachovchin, D. A. Oxidized thioredoxin-1 restrains the NLRP1 inflammasome. Sci. Immunol. 2022, 7, eabm7200. DOI: 10.1126/sciimmunol.abm7200 PMID: 36332009
Volpe, M. R.; Velilla, J. A.; Daniel-Ivad, M.; Yao, J. J.; Stornetta, A.; Villalta, P. W.; Huang, H. C.; Bachovchin, D. A.; Balbo, S.; Gaudet, R.; Balskus, E. P. A small molecule inhibitor prevents gut bacterial genotoxin production. Nat. Chem. Biol. 2023, 19, 159–167. DOI: 10.1038/s41589-022-01147-8 PMID: 36253549
Hsiao, J. C.; Neugroschl, A. R.; Chui, A. J.; Taabazuing, C. Y.; Griswold, A. R.; Wang, Q.; Huang, H. C.; Orth-He, E. L.; Ball, D. P.; Hiotis, G.; Bachovchin, D. A. A ubiquitin-independent proteasome pathway controls activation of the CARD8 inflammasome. J. Biol. Chem. 2022, 298, 102032. DOI: 10.1016/j.jbc.2022.102032 PMID: 35580636
Griswold, A. R.; Huang, H. C.; Bachovchin, D. A. The NLRP1 inflammasome induces pyroptosis in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 2022, 63, 2. DOI: 10.1167/iovs.63.3.2 PMID: 35238869
Rao, S. D.†; Chen, Q.†; Wang, Q.†; Orth-He, E. L.†; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Huang, H. C.; Chui, A. J.; Covelli, D. J.; You, S.; Cross, J. R.; Bachovchin, D. A. M24B aminopeptidase inhibitors selectively activate the CARD8 inflammasome. Nat. Chem. Biol. 2022, 18, 565–574. DOI: 10.1038/s41589-021-00964-7 PMID: 35165443
Johnson, D. C.; Okondo, M. C.; Orth, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Bachovchin, D. A. DPP8/9 inhibitors activate the CARD8 inflammasome in resting lymphocytes. Cell Death Dis. 2020, 11, 628. DOI: 10.1038/s41419-020-02865-4 PMID: 32796818
Iaea, David Zhang, X.; Xie, H.; Iaea, D.; Khelashvili, G.; Weinstein, H.; Maxfield, F. R. Phosphatidylinositol phosphates modulate interactions between the StarD4 sterol trafficking protein and lipid membranes. J. Biol. Chem. 2022, 298, 102058. DOI: 10.1016/j.jbc.2022.102058 PMID: 35605664
Iaea, D. B.; Spahr, Z. R.; Singh, R. K.; Chan, R. B.; Zhou, B.; Bareja, R.; Elemento, O.; Di Paolo, G.; Zhang, X.; Maxfield, F. R. Stable reduction of STARD4 alters cholesterol regulation and lipid homeostasis. Biochim. Biophys. Acta – Mol. Cell. Biol. Lipids 2020, 1865, 158609. DOI: 10.1016/j.bbalip.2020.158609 PMID: 31917335
Iaea, D. B.; Maxfield, F. R. Membrane order in the plasma membrane and endocytic recycling compartment. PLoS ONE 2017, 12, e0188041. DOI: 10.1371/journal.pone.0188041 PMID: 29125865
Stefan, C. J.; Trimble, W. S.; Grinstein, S.; Drin, G.; Reinisch, K.; De Camilli, P.; Cohen, S.; Valm, A. M.; Lippincott-Schwartz, J.; Levine, T. P.; Iaea, D. B.; Maxfield, F. R.; Futter, C. E.; Eden, E. R.; Judith, D.; van Vliet, A. R.; Agostinis, P.; Tooze, S. A.; Sugiura, A.; McBride, H. M. Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biol. 2017, 15, 102. DOI: 10.1186/s12915-017-0432-0 PMID: 29089042
Jena, P. V.; Roxbury, D.; Galassi, T. V.; Akkari, L.; Horoszko, C. P.; Iaea, D. B.; Budhathoki-Uprety, J.; Pipalia, N.; Haka, A. S.; Harvey, J. D.; Mittal, J.; Maxfield, F. R.; Joyce, J. A.; Heller, D. A. A carbon nanotube optical reporter maps endolysosomal lipid flux. ACS Nano 2017, 11, 10689–10703. DOI: 10.1021/acsnano.7b04743 PMID: 28898055
Iaea, D. B.; Mao, S.; Lund, F. W.; Maxfield, F. R. Role of STARD4 in sterol transport between the endocytic recycling compartment and the plasma membrane. Mol. Biol. Cell 2017, 28, 1111–1122. DOI: 10.1091/mbc.E16-07-0499 PMID: 28209730
Maxfield, F. R.; Iaea, D. B.; Pipalia, N. H. Role of STARD4 and NPC1 in intracellular sterol transport. Biochem. Cell Biol. 2016, 94, 499–506. PMID: 27421092
Iaea, D. B.; Gale, S. E.; Bielska, A. A.; Krishnan, K.; Fujiwara, H.; Jiang, H.; Maxfield, F. R.; Schlesinger, P. H.; Covey, D. F.; Schaffer, J. E.; Ory, D. S. A novel intrinsically fluorescent probe for study of uptake and trafficking of 25-hydroxycholesterol. J. Lipid Res. 2015, 56, 2408–2419. DOI: 10.1194/jlr.D064287 PMID: 26497473
Iaea, D. B.; Dikiy, I.; Kiburu, I.; Eliezer, D.; Maxfield, F. R. STARD4 membrane interactions and sterol binding. Biochemistry 2015, 54, 4623–4636. DOI: 10.1021/acs.biochem.5b00618 PMID: 26168008
Iaea, D. B.; Maxfield, F. R. Cholesterol trafficking and distribution. Essays Biochem. 2015, 57, 43–55. DOI: 10.1042/bse0570043 PMID: 25658343
Iqbal, Hala Iqbal, H. A.; Low-Beinart, L.; Obiajulu, J. U.; Brady, S. F. Natural product discovery through improved functional metagenomics in Streptomyces. J. Am. Chem. Soc. 2016, 138, 9341–9344. DOI: 10.1021/jacs.6b02921 PMID: 27447056
Iqbal, H. A.; Craig, J. W.; Brady, S. F. Antibacterial enzymes from the functional screening of metagenomic libraries hosted in Ralstonia metallidurans. FEMS Microbiol. Lett. 2014, 354, 19–26. DOI: 10.1111/1574-6968.12431 PMID: 24661178
Iqbal, H. A.; Feng, Z.; Brady, S. F. Biocatalysts and small molecule products from metagenomic studies. Curr. Opin. Chem. Biol. 2012, 16, 109–116. DOI: 10.1016/j.cbpa.2012.02.015 PMID: 22455793
Işik, Mehtap Grosjean, H.; Işık, M.; Aimon, A.; Mobley, D.; Chodera, J.; von Delft, F.; Biggin, P. C. SAMPL7 protein-ligand challenge: A community-wide evaluation of computational methods against fragment screening and pose-prediction. J Comput Aided Mol Des 2022, 36, 291–311. DOI: 10.1007/s10822-022-00452-7 PMID: 35426591
Bahr, M. N.; Nandkeolyar, A.; Kenna, J. K.; Nevins, N.; Da Vià, L.; Işık, M.; Chodera, J. D.; Mobley, D. L. Automated high throughput pKa and distribution coefficient measurements of pharmaceutical compounds for the SAMPL8 blind prediction challenge. J. Comput. Aided Mol. Des. 2021, 35, 1141–1155. DOI: 10.1007/s10822-021-00427-0 PMID: 34714468
Işık, M.; Rustenburg, A. S.; Rizzi, A.; Gunner, M. R.; Mobley, D. L.; Chodera, J. D. Overview of the SAMPL6 pKa challenge: Evaluating small molecule microscopic and macroscopic pKa predictions. J. Comput. Aided Mol. Des. 2021, 35, 131–166. DOI: 10.1007/s10822-020-00362-6 PMID: 33394238
Işık, M.; Bergazin, T. D.; Fox, T.; Rizzi, A.; Chodera, J. D.; Mobley, D. L. Assessing the accuracy of octanol-water partition coefficient predictions in the SAMPL6 Part II log P Challenge. J. Comput. Aided Mol. Des. 2020, 34, 335–370. DOI: 10.1007/s10822-020-00295-0 PMID: 32107702
Gunner, M. R.; Murakami, T.; Rustenburg, A. S.; Işık, M.; Chodera, J. D. Standard state free energies, not pKas, are ideal for describing small molecule protonation and tautomeric states. J. Comput. Aided Mol. Des. 2020, 34, 561–573. DOI: 10.1007/s10822-020-00280-7 PMID: 32052350
Işık, M.; Levorse, D.; Mobley, D. L.; Rhodes, T.; Chodera, J. D. Octanol-water partition coefficient measurements for the SAMPL6 blind prediction challenge. J. Comput. Aided Mol. Des. 2020, 34, 405–420. DOI: 10.1007/s10822-019-00271-3 PMID: 31858363
Işık, M.; Levorse, D.; Rustenburg, A. S.; Ndukwe, I. E.; Wang, H.; Wang, X.; Reibarkh, M.; Martin, G. E.; Makarov, A. A.; Mobley, D. L.; Rhodes, T.; Chodera, J. D. pKa measurements for the SAMPL6 prediction challenge for a set of kinase inhibitor-like fragments. J. Comput. Aided Mol. Des. 2018, 32, 1117–1138. DOI: 10.1007/s10822-018-0168-0 PMID: 30406372
Albanese, S. K.; Parton, D. L.; Işık, M.; Rodríguez-Laureano, L.; Hanson, S. M.; Behr, J. M.; Gradia, S.; Jeans, C.; Levinson, N. M.; Seeliger, M. A.; Chodera, J. D. An open library of human kinase domain constructs for automated bacterial expression. Biochemistry 2018, 57, 4675–4689. DOI: 10.1021/acs.biochem.7b01081 PMID: 30004690
Shamay, Y.; Shah, J.; Işık, M.; Mizrachi, A.; Leibold, J.; Tschaharganeh, D. F.; Roxbury, D.; Budhathoki-Uprety, J.; Nawaly, K.; Sugarman, J. L.; Baut, E.; Neiman, M. R.; Dacek, M.; Ganesh, K. S.; Johnson, D. C.; Sridharan, R.; Chu, K. L.; Rajasekhar, V. K.; Lowe, S. W.; Chodera, J. D.; Heller, D. A. Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 2018, 17, 361–368. DOI: 10.1038/s41563-017-0007-z PMID: 29403054
Jain, Ruchi Jain, R.; Poulos, M. G.; Gros, J.; Chakravarty, A. K.; Shuman, S. Substrate specificity and mutational analysis of Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA 2011, 17, 1336–1343. DOI: 10.1261/rna.2722711 PMID: 21610213
Jain, R.; Shuman, S. Active site mapping and substrate specificity of bacterial Hen1, a manganese-dependent 3´ terminal RNA ribose 2´-O-methyltransferase. RNA 2011, 17, 429–438. DOI: 10.1261/rna.2500711 PMID: 21205839
Jain, R.; Shuman, S. Bacterial Hen1 is a 3´ terminal RNA ribose 2´-O-methyltransferase component of a bacterial RNA repair cassette. RNA 2010, 16, 316–323. DOI: 10.1261/rna.1926510 PMID: 20007328
Keppetipola, N.; Jain, R.; Meineke, B.; Diver, M.; Shuman, S. Structure-activity relationships in Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA 2009, 15, 1036–1044. DOI: 10.1261/rna.1637809 PMID: 19383764
Jain, R.; Shuman, S. Characterization of a thermostable archaeal polynucleotide kinase homologous to human Clp1. RNA 2009, 15, 923–931. DOI: 10.1261/rna.1492809 PMID: 19299550
Jain, R.; Shuman, S. Polyphosphatase activity of CthTTM, a bacterial triphosphate tunnel metalloenzyme. J. Biol. Chem. 2008, 283, 31047–31057. DOI: 10.1074/jbc.M805392200 PMID: 18782773
Keppetipola, N.; Jain, R.; Shuman, S. Novel triphosphate phosphohydrolase activity of Clostridium thermocellum TTM, a member of the triphosphate tunnel metalloenzyme superfamily. J. Biol. Chem. 2007, 282, 11941–11949. DOI: 10.1074/jbc.M611328200 PMID: 17303560
Jaramillo Cartagena, Alexis Carson, D. V.; Zhang, Y.; So, L.; Cheung-Lee, W. L.; Cartagena, A. J.; Darst, S. A.; Link, A. J. Discovery, characterization, and bioactivity of the achromonodins: Lasso peptides encoded by Achromobacter. J. Nat. Prod. 2023, 86, 2448–2456. DOI: 10.1021/acs.jnatprod.3c00536 PMID: 37870195
Cheung-Lee, W. L.; Parry, M.; Zong, C.; Jaramillo Cartagena, A.; Darst, S.; Connell, N.; Russo, R.; Link, A. J. Discovery of ubonodin, an antimicrobial lasso peptide active against members of the Burkholderia cepacia complex. ChemBioChem 2020, 21, 1335–1340. DOI: 10.1002/cbic.201900707 PMID: 31765515
Jaramillo Cartagena, A.; Banta, A. B.; Sathyan, N.; Ross, W.; Gourse, R. L.; Campbell, E. A.; Darst, S. A. Structural basis for transcription activation by Crl through tethering of σS and RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18923–18927. DOI: 10.1073/pnas.1910827116 PMID: 31484766
Cheung-Lee, W. L.; Parry, M. E.; Jaramillo Cartagena, A.; Darst, S. A.; Link, A. J. Discovery and structure of the antimicrobial lasso peptide citrocin. J. Biol. Chem. 2019, 294, 6822–6830. DOI: 10.1074/jbc.RA118.006494 PMID: 30846564
McCoy, J. G.; Rusinova, R.; Kim, D. M.; Kowal, J.; Banerjee, S.; Jaramillo Cartagena, A.; Thompson, A. N.; Kolmakova-Partensky, L.; Stahlberg, H.; Andersen, O. S.; Nimigean, C. M. A KcsA/MloK1 chimeric ion channel has lipid-dependent ligand-binding energetics. J. Biol. Chem. 2014, 289, 9535–9546. DOI: 10.1074/jbc.M113.543389 PMID: 24515111
Jogini, Vishwanath Cordero-Morales, J. F.; Jogini, V.; Lewis, A.; Vásquez, V.; Cortes, D. M.; Roux, B.; Perozo, E. Molecular driving forces determining potassium channel slow inactivation. Nat. Struct. Mol. Biol. 2007, 14, 1062–1069. DOI: 10.1038/nsmb1309 PMID: 17922012
Jogini, V.; Roux, B. Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment. Biophys. J. 2007, 93, 3070–3082. DOI: 10.1529/biophysj.107.112540 PMID: 17704179
Faraldo-Gómez, J. D.; Kutluay, E.; Jogini, V.; Zhao, Y.; Heginbotham, L.; Roux, B. Mechanism of intracellular block of the KcsA K+ channel by tetrabutylammonium: insights from X-ray crystallography, electrophysiology and replica-exchange molecular dynamics simulations. J. Mol. Biol. 2006, 365, 649–662. DOI: 10.1016/j.jmb.2006.09.069 PMID: 17070844
Cordero-Morales, J. F.; Cuello, L. G.; Zhao, Y.; Jogini, V.; Cortes, D. M.; Roux, B.; Perozo, E. Molecular determinants of gating at the potassium-channel selectivity filter. Nat. Struct. Mol. Biol. 2006, 13, 311–318. DOI: 10.1038/nsmb1069 PMID: 16532009
Jogini, V.; Roux, B. Electrostatics of the intracellular vestibule of K+ channels. J. Mol. Biol. 2005, 354, 272–288. DOI: 10.1016/j.jmb.2005.09.031 PMID: 16242718
Candi, E.; Paradisi, A.; Terrinoni, A.; Pietroni, V.; Oddi, S.; Cadot, B.; Jogini, V.; Meiyappan, M.; Clardy, J.; Finazzi-Agro, A.; Melino, G. Transglutaminase 5 is regulated by guanine-adenine nucleotides. Biochem. J. 2004, 381, 313–319. DOI: 10.1042/BJ20031474 PMID: 15038793
Johnson, Darren Ball, D. P.; Tsamouri, L. P.; Wang, A. E.; Huang, H. C.; Warren, C. D.; Wang, Q.; Edmondson, I. H.; Griswold, A. R.; Rao, S. D.; Johnson, D. C.; Bachovchin, D. A. Oxidized thioredoxin-1 restrains the NLRP1 inflammasome. Sci. Immunol. 2022, 7, eabm7200. DOI: 10.1126/sciimmunol.abm7200 PMID: 36332009
Johnson, D. C.; Okondo, M. C.; Orth, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Bachovchin, D. A. DPP8/9 inhibitors activate the CARD8 inflammasome in resting lymphocytes. Cell Death Dis. 2020, 11, 628. DOI: 10.1038/s41419-020-02865-4 PMID: 32796818
Ball, D. P.; Taabazuing, C. Y.; Griswold, A. R.; Orth, E. L.; Rao, S. D.; Kotliar, I. B.; Vostal, L. E.; Johnson, D. C.; Bachovchin, D. A. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci. Alliance 2020, 3, e202000664. DOI: 10.26508/lsa.202000664 PMID: 32051255
Buckley, B. J.; Majed, H.; Aboelela, A.; Minaei, E.; Jiang, L.; Fildes, K.; Cheung, C. Y.; Johnson, D.; Bachovchin, D.; Cook, G. M.; Huang, M.; Ranson, M.; Kelso, M. J. 6-Substituted amiloride derivatives as inhibitors of the urokinase-type plasminogen activator for use in metastatic disease. Bioorg. Med. Chem. Lett. 2019, 29, 126753. DOI: 10.1016/j.bmcl.2019.126753 PMID: 31679971
Gai, K.; Okondo, M. C.; Rao, S. D.; Chui, A. J.; Ball, D. P.; Johnson, D. C.; Bachovchin, D. A. DPP8/9 inhibitors are universal activators of functional NLRP1 alleles. Cell Death. Dis. 2019, 10, 587. DOI: 10.1038/s41419-019-1817-5 PMID: 31383852
Chui, A. J.; Okondo, M. C.; Rao, S. D.; Gai, K.; Griswold, A. R.; Johnson, D. C.; Ball, D. P.; Taabazuing, C. Y.; Orth, E. L.; Vittimberga, B. A.; Bachovchin, D. A. N-terminal degradation activates the NLRP1B inflammasome. Science 2019, 364, 82–85. DOI: 10.1126/science.aau1208 PMID: 30872531
Buckley, B. J.; Aboelela, A.; Minaei, E.; Jiang, L. X.; Xu, Z.; Ali, U.; Fildes, K.; Cheung, C. Y.; Cook, S. M.; Johnson, D. C.; Bachovchin, D. A.; Cook, G. M.; Apte, M.; Huang, M.; Ranson, M.; Kelso, M. J. 6-Substituted hexamethylene amiloride (HMA) derivatives as potent and selective inhibitors of the human urokinase plasminogen activator for use in cancer. J. Med. Chem. 2018, 61, 8299–8320. DOI: 10.1021/acs.jmedchem.8b00838 PMID: 30130401
Johnson, D. C.; Taabazuing, C. Y.; Okondo, M. C.; Chui, A. J.; Rao, S. D.; Brown, F. C.; Reed, C.; Peguero, E.; de Stanchina, E.; Kentsis, A.; Bachovchin, D. A. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 2018, 24, 1151–1156. DOI: 10.1038/s41591-018-0082-y PMID: 29967349
Shamay, Y.; Shah, J.; Işık, M.; Mizrachi, A.; Leibold, J.; Tschaharganeh, D. F.; Roxbury, D.; Budhathoki-Uprety, J.; Nawaly, K.; Sugarman, J. L.; Baut, E.; Neiman, M. R.; Dacek, M.; Ganesh, K. S.; Johnson, D. C.; Sridharan, R.; Chu, K. L.; Rajasekhar, V. K.; Lowe, S. W.; Chodera, J. D.; Heller, D. A. Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 2018, 17, 361–368. DOI: 10.1038/s41563-017-0007-z PMID: 29403054
Okondo, M. C.; Rao, S. D.; Taabazuing, C. Y.; Chui, A. J.; Poplawski, S. E.; Johnson, D. C.; Bachovchin, D. A. Inhibition of Dpp8/9 activates the Nlrp1b inflammasome. Cell Chem. Biol. 2018, 25, 262–267. DOI: 10.1016/j.chembiol.2017.12.013 PMID: 29396289
Goel, P.; Jumpertz, T.; Mikles, D. C.; Tichá, A.; Nguyen, M. T. N.; Verhelst, S.; Hubalek, M.; Johnson, D. C.; Bachovchin, D. A.; Ogorek, I.; Pietrzik, C. U.; Strisovsky, K.; Schmidt, B.; Weggen, S. Discovery and biological evaluation of potent and selective N-methylene saccharin-derived inhibitors for rhomboid intramembrane proteases. Biochemistry 2017, 56, 6713–6725. DOI: 10.1021/acs.biochem.7b01066 PMID: 29185711
Tichá, A.; Stanchev, S.; Vinothkumar, K. R.; Mikles, D. C.; Pachl, P.; Began, J.; Škerle, J.; Švehlová, K.; Nguyen, M. T. N.; Verhelst, S. H. L.; Johnson, D. C.; Bachovchin, D. A.; Lepšík, M.; Majer, P.; Strisovsky, K. General and modular strategy for designing potent, selective, and pharmacologically compliant inhibitors of rhomboid proteases. Cell Chem. Biol. 2017, 24, 1523–1536. DOI: 10.1016/j.chembiol.2017.09.007 PMID: 29107700
Okondo, M. C.; Johnson, D. C.; Sridharan, R.; Go, E. B.; Chui, A. J.; Wang, M. S.; Poplawski, S. E.; Wu, W.; Liu, Y.; Lai, J. H.; Sanford, D. G.; Arciprete, M. O.; Golub, T. R.; Bachovchin, W. W.; Bachovchin, D. A. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat. Chem. Biol. 2017, 13, 46–53. DOI: 10.1038/nchembio.2229 PMID: 27820798
Johnson, Jeffrey Johnson, J. G.; Wang, B.; Debelouchina, G. T.; Novick, R. P.; Muir, T. W. Increasing AIP macrocycle size reveals key features of agr activation in Staphylococcus aureus. ChemBioChem 2015, 16, 1093–1100. DOI: 10.1002/cbic.201500006 PMID: 25801678
Jones, Natalie Jones, N. H.; Liu, Q.; Urnavicius, L.; Dahan, N. E.; Vostal, L. E.; Kapoor, T. M. Allosteric activation of VCP, an AAA unfoldase, by small molecule mimicry. Proc. Natl. Acad. Sci. U.S.A. 2024, 121, e2316892121. DOI: 10.1073/pnas.2316892121 PMID: 38833472
Jones, N. H.; Kapoor, T. M. Achieving the promise and avoiding the peril of chemical probes using genetics. Curr. Opin. Struct. Biol. 2023, 81, 102628. DOI: 10.1016/j.sbi.2023.102628 PMID: 37364429
Cupido, T.†; Jones, N. H.†; Grasso, M. J.; Pisa, R.; Kapoor, T. M. A chemical genetics approach to examine the functions of AAA proteins. Nat. Struct. Mol. Biol. 2021, 28, 388–397. DOI: 10.1038/s41594-021-00575-9 PMID: 33782614
Pisa, R.; Cupido, T.; Steinman, J. B.; Jones, N. H.; Kapoor, T. M. Analyzing resistance to design selective chemical inhibitors for AAA proteins. Cell Chem. Biol. 2019, 26, 1263–1273. DOI: 10.1016/j.chembiol.2019.06.001 PMID: 31257183
Jordan, Victoria Jordan, V. N.; Ordureau, A.; An, H. Identifying E3 ligase substrates with quantitative degradation proteomics. ChemBioChem 2023, 24, e202300108. DOI: 10.1002/cbic.202300108 PMID: 37166757
Kapoor, Neeraj Gupta, R.; Kapoor, N.; Raleigh, D. P.; Sakmar, T. P. Nucleobindin 1 caps human islet amyloid polypeptide protofibrils to prevent amyloid fibril formation. J. Mol. Biol. 2012, 421, 378–389. DOI: 10.1016/j.jmb.2012.04.017 PMID: 22542527
Kapoor, N.; Gupta, R.; Menon, S. T.; Folta-Stogniew, E.; Raleigh, D. P.; Sakmar, T. P. Nucleobindin 1 is a calcium-regulated guanine nucleotide dissociation inhibitor of G{alpha}i1. J. Biol. Chem. 2010, 285, 31647–31660. DOI: 10.1074/jbc.M110.148429 PMID: 20679342
Kapoor, N.; Menon, S. T.; Chauhan, R.; Sachdev, P.; Sakmar, T. P. Structural evidence for a sequential release mechanism for activation of heterotrimeric G proteins. J. Mol. Biol. 2009, 393, 882–897. DOI: 10.1016/j.jmb.2009.08.043 PMID: 19703466
Karimov, Rashad Bolaender, A.; Zatorska, D.; He, H.; Joshi, S.; Sharma, S.; Digwal, C. S.; Patel, H. J.; Sun, W.; Imber, B. S.; Ochiana, S. O.; Patel, M. R.; Shrestha, L.; Shah, S. K.; Wang, S.; Karimov, R.; Tao, H.; Patel, P. D.; Martin, A. R.; Yan, P.; Panchal, P.; Almodovar, J.; Corben, A.; Rimner, A.; Ginsberg, S. D.; Lyashchenko, S.; Burnazi, E.; Ku, A.; Kalidindi, T.; Lee, S. G.; Grkovski, M.; Beattie, B. J.; Zanzonico, P.; Lewis, J. S.; Larson, S.; Rodina, A.; Pillarsetty, N.; Tabar, V.; Dunphy, M. P.; Taldone, T.; Shimizu, F.; Chiosis, G. Chemical tools for epichaperome-mediated interactome dysfunctions of the central nervous system. Nat. Commun. 2021, 12, 4669. DOI: 10.1038/s41467-021-24821-2 PMID: 34344873
Karimov, R. R.*; Tan, D. S.*; Gin, D. Y. Synthesis of the hexacyclic triterpene core of the jujuboside saponins via tandem Wolff rearrangement–intramolecular ketene hetero-Diels–Alder reaction. Tetrahedron 2018, 74, 3370–3383. DOI: 10.1016/j.tet.2018.04.051 PMID: 30467444
Karimov, R. R.*; Tan, D. S.*; Gin, D. Y. Rapid assembly of the doubly-branched pentasaccharide domain of the immunoadjuvant jujuboside A via convergent B(C6F5)3-catalyzed glycosylation of sterically-hindered precursors. Chem. Commun. (Camb.) 2017, 53, 5838–5841. DOI: 10.1039/c7cc01783a PMID: 28498382
Pickett, J. E.; Váradi, A.; Palmer, T. C.; Grinnell, S. G.; Schrock, J. M.; Pasternak, G. W.; Karimov, R. R.; Majumdar, S. Mild, Pd-catalyzed stannylation of radioiodination targets. Bioorg. Med. Chem. Lett. 2015, 25, 1761–1764. DOI: 10.1016/j.bmcl.2015.02.055 PMID: 25777268
Keppetipola, Niroshika Keppetipola, N.; Jain, R.; Meineke, B.; Diver, M.; Shuman, S. Structure-activity relationships in Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA 2009, 15, 1036–1044. DOI: 10.1261/rna.1637809 PMID: 19383764
Keppetipola, N.; Shuman, S. A phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2´,3´-cyclic nucleotide phosphodiesterase activity. J. Biol. Chem. 2008, 283, 30942–30949. DOI: 10.1074/jbc.M805064200 PMID: 18757371
Keppetipola, N.; Shuman, S. Characterization of the 2´,3´ cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage lambda phosphatase. Nucleic Acids Res. 2008, 35, 7721–7732. DOI: 10.1093/nar/gkm868 PMID: 17986465
Keppetipola, N.; Nandakumar, J.; Shuman, S. Reprogramming the tRNA-splicing activity of a bacterial RNA repair enzyme. Nucleic Acids Res. 2007, 35, 3624–3630. DOI: 10.1093/nar/gkm110 PMID: 17488852
Keppetipola, N.; Jain, R.; Shuman, S. Novel triphosphate phosphohydrolase activity of Clostridium thermocellum TTM, a member of the triphosphate tunnel metalloenzyme superfamily. J. Biol. Chem. 2007, 282, 11941–11949. DOI: 10.1074/jbc.M611328200 PMID: 17303560
Keppetipola, N.; Shuman, S. Distinct enzymic functional groups are required for the phosphomonoesterase and phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase/phosphatase. J. Biol. Chem. 2006, 281, 19251–19259. DOI: 10.1074/jbc.M602549200 PMID: 16675457
Keppetipola, N.; Shuman, S. Mechanism of the phosphatase component of Clostridium thermocellum polynucleotide kinase-phosphatase. RNA 2005, 12, 73–82. DOI: 10.1261/rna.2196406 PMID: 16301605
Keppetipola, N.; Shuman, S. Characterization of a thermophilic ATP-dependent DNA ligase from the euryarchaeon Pyrococcus horikoshii. J. Bacteriol. 2005, 187, 6902–6908. DOI: 10.1128/JB.187.20.6902-6908.2005 PMID: 16199559
King, Heather King, H. A.; Hoelz, A.; Crane, B. R.; Young, M. W. Structure of an enclosed dimer formed by the Drosophila period protein. J. Mol. Biol. 2011, 413, 561–572. DOI: 10.1016/j.jmb.2011.08.048 PMID: 21907720
King, Ryan Bauer, J. D.; King, R. W.; Brady, S. F. Utahmycins A and B, azaquinones produced by an environmental DNA clone. J. Nat. Prod. 2010, 73, 976–979. DOI: 10.1021/np900786s PMID: 20387794
King, R. W.; Bauer, J. D.; Brady, S. F. An environmental DNA-derived type II polyketide biosynthetic pathway encodes the biosynthesis of the pentacyclic polyketide erdacin. Angew. Chem. Int. Ed. Engl. 2009, 48, 6257–6261. DOI: 10.1002/anie.200901209 PMID: 19621341
Kobašlija, Muris
Poe, S. L.; Kobašlija, M.; McQuade, D. T. Mechanism and application of a microcapsule enabled multicatalyst reaction. J. Am. Chem. Soc. 2007, 129, 9216–9221. DOI: 10.1021/ja071706x PMID: 17602626
Poe, S. L.; Kobašlija, M.; McQuade, D. T. Microcapsule enabled multicatalyst system. J. Am. Chem. Soc. 2006, 128, 15586–15587. DOI: 10.1021/ja066476l PMID: 17147357
Kobašlija, M.; McQuade, D. T. Removable colored coatings based on calcium alginate hydrogels. Biomacromolecules 2006, 7, 2357–2361. DOI: 10.1021/bm060341q PMID: 16903682
Kobašlija, M.; McQuade, D. T. Polyurea microcapsules from oil-in-oil emulsions via interfacial polymerization. Macromolecules 2006, 39, 6371–6375. DOI: 10.1021/ma061455x
Broadwater, S. J.; Roth, S. L.; Price, K. E.; Kobašlija, M.; McQuade, D. T. One-pot multi-step synthesis: a challenge spawning innovation. Org. Biomol. Chem. 2005, 3, 2899–2906. DOI: 10.1039/B506621M PMID: 16186917
Eliezer, D.; Barré, P.; Kobašlija, M.; Chan, D.; Li, X.; Heend, L. Residual structure in the repeat domain of tau: echoes of microtubule binding and paired helical filament formation. Biochemistry 2005, 44, 1026–1036. DOI: 10.1021/bi048953n PMID: 15654759
Kolodzinski, Arielle Mattheisen, J. M.†; Rasmussen, V. A.†; Ceraudo, E.; Kolodzinski, A.; Horioka-Duplix, M.; Sakmar, T. P.; Huber, T. Application of bioluminescence resonance energy transfer to quantitate cell-surface expression of membrane proteins. Anal. Biochem. 2024, 684, 115361. DOI: 10.1016/j.ab.2023.115361 PMID: 37865268
Kotliar, Ilana Kotliar, I. B.; Bendes, A.; Dahl, L.; Chen, Y.; Saarinen, M.; Ceraudo, E.; Dodig-Crnković, T.; Uhlén, M.; Svenningsson, P.; Schwenk, J. M.; Sakmar, T. P. Multiplexed mapping of the interactome of GPCRs with receptor activity-modifying proteins. Sci. Adv. 2024, 10, eado9959. DOI: 10.1126/sciadv.ado9959 PMID: 39083597
Kotliar, I. B.* Proteomics update and perspectives from the Proteomics in Cell Biology and Disease Mechanisms Conference. ChemBioChem 2023, 24, e202200626. DOI: 10.1002/cbic.202200626 PMID: 36703596
Dahl, L.†; Kotliar, I. B.†; Bendes, A.; Dodig-Crnković, T.; Fromm, S.; Elofsson, A.; Uhlén, M.; Sakmar, T. P.; Schwenk, J. M. Multiplexed selectivity screening of anti-GPCR antibodies. Sci. Adv. 2023, 9, eadf9297. DOI: 10.1126/sciadv.adf9297 PMID: 37134173
Kotliar, I. B.; Ceraudo, E.; Kemelmakher-Liben, K.; Oren, D. A.; Lorenzen, E.; Dodig-Crnković, T.; Horioka-Duplix, M.; Huber, T.; Schwenk, J. M.; Sakmar, T. P. Itch receptor MRGPRX4 interacts with the receptor activity-modifying proteins. J. Biol. Chem. 2023, 299, 104664. DOI: 10.1016/j.jbc.2023.104664 PMID: 37003505
Kotliar, I. B.; Lorenzen, E.; Schwenk, J. M.; Hay, D. L.; Sakmar, T. P. Elucidating the interactome of G protein-coupled receptors and receptor activity-modifying proteins. Pharmacol. Rev. 2023, 75, 1–34. DOI: 10.1124/pharmrev.120.000180 PMID: 36757898
Ball, D. P.; Taabazuing, C. Y.; Griswold, A. R.; Orth, E. L.; Rao, S. D.; Kotliar, I. B.; Vostal, L. E.; Johnson, D. C.; Bachovchin, D. A. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci. Alliance 2020, 3, e202000664. DOI: 10.26508/lsa.202000664 PMID: 32051255
Lorenzen, E.; Dodig-Crnković, T.; Kotliar, I. B.; Pin, E.; Ceraudo, E.; Vaughan, R. D.; Uhlèn, M.; Huber, T.; Schwenk, J. M.; Sakmar, T. P. Multiplexed analysis of the secretin-like GPCR-RAMP interactome. Sci. Adv. 2019, 5, eaaw2778. DOI: 10.1126/sciadv.aaw2778 PMID: 31555726
Lee, Adrian Hoelz, A.; Janz, J. M.; Lawrie, S. D.; Corwin, B.; Lee, A.; Sakmar, T. P. Crystal structure of the SH3 domain of betaPIX in complex with a high affinity peptide from PAK2. J. Mol. Biol. 2006, 358, 509–522. DOI: 10.1016/j.jmb.2006.02.027 PMID: 16527308
Martin, O. J.; Lee, A.; McGraw, T. E. GLUT4 distribution between the plasma membrane and the intracellular compartments is maintained by an insulin-modulated bipartite dynamic mechanism. J. Biol. Chem. 2006, 281, 484–490. DOI: 10.1074/jbc.M505944200 PMID: 16269413
Eguez, L.; Lee, A.; Chavez, J. A.; Miinea, C. P.; Kane, S.; Lienhard, G. E.; McGraw, T. E. Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metab. 2005, 2, 263–272. DOI: 10.1016/j.cmet.2005.09.005 PMID: 16213228
Lee, Jonghan Peter Lee, J. P.; Corless, B. C.; Gardner, T. J.; Scheinberg, D. A.; Tan, D. S. Development of a p-hydroxybenzyl-alcohol-linked glutamate prodrug for activation by Pseudomonas carboxypeptidase G2. Org. Lett. 2023, 25, 6295–6299. DOI: 10.1021/acs.orglett.3c02130 PMID: 37602700
Gardner, T. J.†; Lee, J. P.†; Bourne, C. M.; Wijewarnasuriya, D.; Kinarivala, N.; Kurtz, K. G.; Corless, B. C.; Dacek, M. M.; Chang, A. Y.; Mo, G.; Nguyen, K. M.; Brentjens, R. J.; Tan, D. S.; Scheinberg, D. A. Engineering CAR-T cells to activate small-molecule drugs in situ. Nat. Chem. Biol. 2022, 18, 216–225. DOI: 10.1038/s41589-021-00932-1 PMID: 34969970
Cai, X. C.; Zhang, T.; Kim, E. J.; Jiang, M.; Wang, K.; Wang, J.; Chen, S.; Zhang, N.; Wu, H.; Li, F.; Dela Seña, C. C.; Zeng, H.; Vivcharuk, V.; Niu, X.; Zheng, W.; Lee, J. P.; Chen, Y.; Barsyte, D.; Szewczyk, M.; Hajian, T.; Ibáñez, G.; Dong, A.; Dombrovski, L.; Zhang, Z.; Deng, H.; Min, J.; Arrowsmith, C. H.; Mazutis, L.; Shi, L.; Vedadi, M.; Brown, P. J.; Xiang, J.; Qin, L. X.; Xu, W.; Luo, M. A chemical probe of CARM1 alters epigenetic plasticity against breast cancer cell invasion. eLife 2019, 8, e47110. DOI: 10.7554/eLife.47110 PMID: 31657716
Leicher, Rachel Leicher, R.; Liu, S. Probing the interaction between chromatin and chromatin-associated complexes with optical tweezers. Methods Mol. Biol. 2022, 2478, 313–327. DOI: 10.1007/978-1-0716-2229-2_11 PMID: 36063325
Leicher, R.†; Osunsade, A.†; Chua, G. N. L.†; Faulkner, S. C.†; Latham, A. P.; Watters, J. W.; Nguyen, T.; Beckwitt, E. C.; Christodoulou-Rubalcava, S.; Young, P. G.; Zhang, B.; David, Y.; Liu, S. Single-stranded nucleic acid binding and coacervation by linker histone H1. Nat. Struct. Mol. Biol. 2022, 29, 463–471. DOI: 10.1038/s41594-022-00760-4 PMID: 35484234
Lin, X.; Leicher, R.; Liu, S.; Zhang, B. Cooperative DNA looping by PRC2 complexes. Nucleic Acids Res. 2021, 49, 6238–6248. DOI: 10.1093/nar/gkab441 PMID: 34057467
Leicher, R.; Ge, E. J.; Lin, X.; Reynolds, M. J.; Xie, W.; Walz, T.; Zhang, B.; Muir, T. W.; Liu, S. Single-molecule and in silico dissection of the interaction between Polycomb repressive complex 2 and chromatin. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 30465–30475. DOI: 10.1073/pnas.2003395117 PMID: 33208532
Mei, L.; Espinosa de Los Reyes, S.; Reynolds, M. J.; Leicher, R.; Liu, S.; Alushin, G. M. Molecular mechanism for direct actin force-sensing by α-catenin. eLife 2020, 9, e62514. DOI: 10.7554/eLife.62514 PMID: 32969337
Zheng, Q.; Omans, N. D.; Leicher, R.; Osunsade, A.; Agustinus, A. S.; Finkin-Groner, E.; D’Ambrosio, H.; Liu, B.; Chandarlapaty, S.; Liu, S.; David, Y. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nat. Commun. 2019, 10, 1289. DOI: 10.1038/s41467-019-09192-z PMID: 30894531
Williams, R. M.; Lee, C.; Galassi, T. V.; Harvey, J. D.; Leicher, R.; Sirenko, M.; Dorso, M. A.; Shah, J.; Olvera, N.; Dao, F.; Levine, D. A.; Heller, D. A. Noninvasive ovarian cancer biomarker detection via an optical nanosensor implant. Sci. Adv. 2018, 4, eaaq1090. DOI: 10.1126/sciadv.aaq1090 PMID: 29675469
Lemmon, Abigail Lee, H. G.; Lemmon, A. A.; Lima, C. D. SUMO enhances unfolding of SUMO-polyubiquitin-modified substrates by the Ufd1/Npl4/Cdc48 complex. Proc. Natl. Acad. Sci. USA 2023, 120, e2213703120. DOI: 10.1073/pnas.2213703120 PMID: 36574706
Levinson, Adam Levinson, A. M.; McGee, J. H.; Roberts, A. G.; Creech, G. S.; Wang, T.; Peterson, M. T.; Hendrickson, R. C.; Verdine, G. L.; Danishefsky, S. J. Total chemical synthesis and folding of all-L and all-D variants of oncogenic KRas(G12V). J. Am. Chem. Soc. 2017, 139, 7632–7639. DOI: 10.1021/jacs.7b02988 PMID: 28448128
Levinson, A. M.* Total synthesis of aspeverin via an iodine(III)-mediated oxidative cyclization. Org. Lett. 2014, 16, 4904–4907. DOI: 10.1021/ol5024163 PMID: 25171639
Poulton, N. C.; DeJesus, M. A.; Munsamy-Govender, V.; Kanai, M.; Roberts, C. G.; Azadian, Z. A.; Bosch, B.; Lin, K. M.; Li, S.; Rock, J. M. Beyond antibiotic resistance: The whiB7 transcription factor coordinates an adaptive response to alanine starvation in mycobacteria. Cell Chem. Biol. 2024, 31, 669–682. DOI: 10.1016/j.chembiol.2023.12.020 PMID: 38266648
Litke, Jacob Litke, J. L.; Jaffrey, S. R. Designing and expressing circular RNA aptamers to regulate mammalian cell biology. Methods Mol. Biol. 2023, 2570, 223–234. DOI: 10.1007/978-1-0716-2695-5_17 PMID: 36156786
Litke, J. L.; Jaffrey, S. R. Trans ligation of RNAs to generate hybrid circular RNAs using highly efficient autocatalytic transcripts. Methods 2021, 196, 104–112. DOI: 10.1016/j.ymeth.2021.05.009 PMID: 33992775
Moon, J. D.; Wu, J.; Dey, S. K.; Litke, J. L.; Li, X.; Kim, H.; Jaffrey, S. R. Naturally occurring three-way junctions can be repurposed as genetically encoded RNA-based sensors. Cell. Chem. Biol 2021, 28, 1569-1580.e4. DOI: 10.1016/j.chembiol.2021.04.022 PMID: 34010626
Li, X.; Mo, L.; Litke, J. L.; Dey, S. K.; Suter, S. R.; Jaffrey, S. R. Imaging intracellular S-adenosyl methionine dynamics in live mammalian cells with a genetically encoded red fluorescent RNA-based sensor. J. Am. Chem. Soc. 2020, 142, 14117–14124. DOI: 10.1021/jacs.0c02931 PMID: 32698574
Li, X.; Kim, H.; Litke, J. L.; Wu, J.; Jaffrey, S. R. Fluorophore-promoted RNA folding and photostability enables imaging of single Broccoli-tagged mRNAs in live mammalian cells. Angew. Chem. Int. Ed. Engl. 2020, 59, 4511–4518. DOI: 10.1002/anie.201914576 PMID: 31850609
Litke, J. L.; Jaffrey, S. R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat. Biotechnol. 2019, 37, 667–675. DOI: 10.1038/s41587-019-0090-6 PMID: 30962542
You, M.; Litke, J. L.; Wu, R.; Jaffrey, S. R. Detection of low-abundance metabolites in live cells using an RNA integrator. Cell Chem. Biol. 2019, 26, 471–481. DOI: 10.1016/j.chembiol.2019.01.005 PMID: 30773480
Litke, J. L.; You, M.; Jaffrey, S. R. Developing fluorogenic riboswitches for imaging metabolite concentration dynamics in bacterial cells. Meth. Enzymol. 2016, 572, 315–333. DOI: 10.1016/bs.mie.2016.03.021 PMID: 27241761
You, M.; Litke, J. L.; Jaffrey, S. R. Imaging metabolite dynamics in living cells using a Spinach-based riboswitch. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, E2756–E2765. DOI: 10.1073/pnas.1504354112 PMID: 25964329
Liu, Fangyu Liu, F.; Kaplan, A. L.; Levring, J.; Einsiedel, J.; Tiedt, S.; Distler, K.; Omattage, N. S.; Kondratov, I. S.; Moroz, Y. S.; Pietz, H. L.; Irwin, J. J.; Gmeiner, P.; Shoichet, B. K.; Chen, J. Structure-based discovery of CFTR potentiators and inhibitors. Cell 2024, 187, 3712-3725. DOI: 10.1016/j.cell.2024.04.046 PMID: 38810646
Liu, F.; Lee, J.; Chen, J. Molecular structures of the eukaryotic retinal importer ABCA4. eLife 2021, 10, e63524. DOI: 10.7554/eLife.63524 PMID: 33605212
Liu, F.; Zhang, Z.; Levit, A.; Levring, J.; Touhara, K. K.; Shoichet, B. K.; Chen, J. Structural identification of a hotspot on CFTR for potentiation. Science 2019, 364, 1184–1188. DOI: 10.1126/science.aaw7611 PMID: 31221859
Zhang, Z.; Liu, F.; Chen, J. Molecular structure of the ATP-bound, phosphorylated human CFTR. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 12757–12762. DOI: 10.1073/pnas.1815287115 PMID: 30459277
Zhang, Z.; Liu, F.; Chen, J. Conformational changes of CFTR upon phosphorylation and ATP binding. Cell 2017, 170, 483–491. DOI: 10.1016/j.cell.2017.06.041 PMID: 28735752
Liu, F.; Zhang, Z.; Csanády, L.; Gadsby, D. C.; Chen, J. Molecular structure of the human CFTR ion channel. Cell 2017, 169, 85–95. DOI: 10.1016/j.cell.2017.02.024 PMID: 28340353
Lu, Alvin Taldone, T.; Kang, Y.; Patel, H. J.; Patel, M. R.; Patel, P. D.; Rodina, A.; Patel, Y.; Gozman, A.; Maharaj, R.; Clement, C. C.; Lu, A.; Young, J. C.; Chiosis, G. Heat shock protein 70 inhibitors. 2. 2,5′-Thiodipyrimidines, 5-(phenylthio)pyrimidines, 2-(pyridin-3-ylthio)pyrimidines, and 3-(phenylthio)pyridines as reversible binders to an allosteric site on heat shock protein 70. J. Med. Chem. 2014, 57, 1208–1224. DOI: 10.1021/jm401552y PMID: 24548239
Lu, Sydney Lu, S. X.; Kappel, L. W.; Charbonneau-Allard, A. M.; Atallah, R.; Holland, A. M.; Turbide, C.; Hubbard, V. M.; Rotolo, J. A.; Smith, M.; Suh, D.; King, C.; Rao, U. K.; Yim, N.; Bautista, J. L.; Jenq, R. R.; Penack, O.; Na, I. K.; Liu, C.; Murphy, G.; Alpdogan, O.; Blumberg, R. S.; Macian, F.; Holmes, K. V.; Beauchemin, N.; van den Brink, M. R. Ceacam1 separates graft-versus-host-disease from graft-versus-tumor activity after experimental allogeneic bone marrow transplantation. PLoS ONE 2011, 6, e21611. DOI: 10.1371/journal.pone.0021611 PMID: 21760897
Lu, S. X.; Holland, A. M.; Na, I. K.; Terwey, T. H.; Alpdogan, O.; Bautista, J. L.; Smith, O. M.; Suh, D.; King, C.; Kochman, A.; Hubbard, V. M.; Rao, U. K.; Yim, N.; Liu, C.; Laga, A. C.; Murphy, G.; Jenq, R. R.; Zakrzewski, J. L.; Penack, O.; Dykstra, L.; Bampoe, K.; Perez, L.; Furie, B.; Furie, B.; van den Brink, M. R. Absence of P-selectin in recipients of allogeneic bone marrow transplantation ameliorates experimental graft-versus-host disease. J. Immunol. 2010, 185, 1912–1919. DOI: 10.4049/jimmunol.0903148 PMID: 20622117
Penack, O.; Henke, E.; Suh, D.; King, C. G.; Smith, O. M.; Na, I. K.; Holland, A. M.; Ghosh, A.; Lu, S. X.; Jenq, R. R.; Liu, C.; Murphy, G. F.; Lu, T. T.; May, C.; Scheinberg, D. A.; Gao, D. C.; Mittal, V.; Heller, G.; Benezra, R.; van den Brink, M. R. Inhibition of neovascularization to simultaneously ameliorate graft-vs-host disease and decrease tumor growth. J. Natl. Cancer Inst. 2010, 102, 894–908. DOI: 10.1093/jnci/djq172 PMID: 20463307
Na, I. K.; Lu, S. X.; Yim, N. L.; Goldberg, G. L.; Tsai, J.; Rao, U.; Smith, O. M.; King, C. G.; Suh, D.; Hirschhorn-Cymerman, D.; Palomba, L.; Penack, O.; Holland, A. M.; Jenq, R. R.; Ghosh, A.; Tran, H.; Merghoub, T.; Liu, C.; Sempowski, G. D.; Ventevogel, M.; Beauchemin, N.; van den Brink, M. R. The cytolytic molecules Fas ligand and TRAIL are required for murine thymic graft-versus-host disease. J. Clin. Invest. 2010, 120, 343–356. DOI: 10.1172/JCI39395 PMID: 19955659
van den Brink, M. R.; Porter, D. L.; Giralt, S.; Lu, S. X.; Jenq, R. R.; Hanash, A.; Bishop, M. R. Relapse after allogeneic hematopoietic cell therapy. Biol. Blood Marrow Transplant. 2010, 16, S138–S145. DOI: 10.1016/j.bbmt.2009.10.023 PMID: 19857588
Penack, O.; Smith, O. M.; Cunningham-Bussel, A.; Liu, X.; Rao, U.; Yim, N.; Na, I. K.; Holland, A. M.; Ghosh, A.; Lu, S. X.; Jenq, R. R.; Liu, C.; Murphy, G. F.; Brandl, K.; van den Brink, M. R. NOD2 regulates hematopoietic cell function during graft-versus-host disease. J. Exp. Med. 2009, 206, 2101–2110. DOI: 10.1084/jem.20090623 PMID: 19737867
Rotolo, J. A.; Stancevic, B.; Lu, S. X.; Zhang, J.; Suh, D.; King, C. G.; Kappel, L. W.; Murphy, G. F.; Liu, C.; Fuks, Z.; van den Brink, M. R.; Kolesnick, R. Cytolytic T cells induce ceramide-rich platforms in target cell membranes to initiate graft-versus-host disease. Blood 2009, 114, 3693–3706. DOI: 10.1182/blood-2008-11-191148 PMID: 19666872
Jenq, R. R.; King, C. G.; Volk, C.; Suh, D.; Smith, O. M.; Rao, U. K.; Yim, N. L.; Holland, A. M.; Lu, S. X.; Zakrzewski, J. L.; Goldberg, G. L.; Diab, A.; Alpdogan, O.; Penack, O.; Na, I. K.; Kappel, L. W.; Wolchok, J. D.; Houghton, A. N.; Perales, M. A.; van den Brink, M. R. Keratinocyte growth factor enhances DNA plasmid tumor vaccine responses after murine allogeneic bone marrow transplantation. Blood 2009, 113, 1574–1580. DOI: 10.1182/blood-2008-05-155697 PMID: 19011222
Lu, S. X.; Alpdogan, O.; Lin, J.; Balderas, R.; Campos-Gonzalez, R.; Wang, X.; Gao, G. J.; Suh, D.; King, C.; Chow, M.; Smith, O. M.; Hubbard, V. M.; Bautista, J. L.; Cabrera-Perez, J.; Zakrzewski, J. L.; Kochman, A. A.; Chow, A.; Altan-Bonnet, G.; van den Brink, M. R. STAT-3 and ERK 1/2 phosphorylation are critical for T-cell alloactivation and graft-versus-host disease. Blood 2008, 112, 5254–5258. DOI: 10.1182/blood-2008-03-147322 PMID: 18838616
Alpdogan, S. O.; Lu, S. X.; Patel, N.; McGoldrick, S.; Suh, D.; Budak-Alpdogan, T.; Smith, O. M.; Grubin, J.; King, C.; Goldberg, G. L.; Hubbard, V. M.; Kochman, A. A.; van den Brink, M. R. Rapidly proliferating CD44hi peripheral T cells undergo apoptosis and delay posttransplantation T-cell reconstitution after allogeneic bone marrow transplantation. Blood 2008, 112, 4755–4764. DOI: 10.1182/blood-2008-02-142737 PMID: 18815289
Zakrzewski, J. L.; Suh, D.; Markley, J. C.; Smith, O. M.; King, C.; Goldberg, G. L.; Jenq, R.; Holland, A. M.; Grubin, J.; Cabrera-Perez, J.; Brentjens, R. J.; Lu, S. X.; Rizzuto, G.; Sant’Angelo, D. B.; Riviere, I.; Sadelain, M.; Heller, G.; Zúñiga-Pflücker, J. C.; Lu, C.; van den Brink, M. R. Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors. Nat. Biotechnol. 2008, 26, 453–461. DOI: 10.1038/nbt1395 PMID: 18376399
Ramirez-Montagut, T.; Chow, A.; Kochman, A. A.; Smith, O. M.; Suh, D.; Sindhi, H.; Lu, S.; Borsotti, C.; Grubin, J.; Patel, N.; Terwey, T. H.; Kim, T. D.; Heller, G.; Murphy, G. F.; Liu, C.; Alpdogan, O.; van den Brink, M. R. IFN-γ and Fas ligand are required for graft-versus-tumor activity against renal cell carcinoma in the absence of lethal graft-versus-host disease. J. Immunol. 2007, 179, 1669–1680. PMID: 17641033
Borsotti, C.; Franklin, A. R.; Lu, S. X.; Kim, T. D.; Smith, O. M.; Suh, D.; King, C. G.; Chow, A.; Liu, C.; Alpdogan, O.; van den Brink, M. R. Absence of donor T-cell-derived soluble TNF decreases graft-versus-host disease without impairing graft-versus-tumor activity. Blood 2007, 110, 783–786. DOI: 10.1182/blood-2006-10-054510 PMID: 17395784
Zakrzewski, J. L.; Kochman, A. A.; Lu, S. X.; Terwey, T. H.; Kim, T. D.; Hubbard, V. M.; Muriglan, S. J.; Suh, D.; Smith, O. M.; Grubin, J.; Patel, N.; Chow, A.; Cabrera-Perez, J.; Radhakrishnan, R.; Diab, A.; Perales, M. A.; Rizzuto, G.; Menet, E.; Pamer, E. G.; Heller, G.; Zúñiga-Pflücker, J. C.; Alpdogan, O.; van den Brink, M. R. Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nat. Med. 2006, 12, 1039–1047. DOI: 10.1038/nm1463 PMID: 16936725
Ramirez-Montagut, T.; Chow, A.; Hirschhorn-Cymerman, D.; Terwey, T. H.; Kochman, A. A.; Lu, S.; Miles, R. C.; Sakaguchi, S.; Houghton, A. N.; van den Brink, M. R. Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity. J. Immunol. 2006, 176, 6434–6442. PMID: 16709800
Alpdogan, O.; Hubbard, V. M.; Smith, O. M.; Patel, N.; Lu, S.; Goldberg, G. L.; Gray, D. H.; Feinman, J.; Kochman, A. A.; Eng, J. M.; Suh, D.; Muriglan, S. J.; Boyd, R. L.; van den Brink, M. R. Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood 2006, 107, 2453–2460. DOI: 10.1182/blood-2005-07-2831 PMID: 16304055
Waldman, E.; Lu, S. X.; Hubbard, V. M.; Kochman, A. A.; Eng, J. M.; Terwey, T. H.; Muriglan, S. J.; Kim, T. D.; Heller, G.; Murphy, G. F.; Liu, C.; Alpdogan, O.; van den Brink, M. R. Absence of β7 integrin results in less graft-versus-host disease because of decreased homing of alloreactive T cells to intestine. Blood 2006, 107, 1703–1711. DOI: 10.1182/blood-2005-08-3445 PMID: 16291587
Terwey, T. H.; Kim, T. D.; Kochman, A. A.; Hubbard, V. M.; Lu, S.; Zakrzewski, J. L.; Ramirez-Montagut, T.; Eng, J. M.; Muriglan, S. J.; Heller, G.; Murphy, G. F.; Liu, C.; Budak-Alpdogan, T.; Alpdogan, O.; van den Brink, M. R. CCR2 is required for CD8-induced graft-versus-host disease. Blood 2005, 106, 3322–3330. DOI: 10.1182/blood-2005-05-1860 PMID: 16037386
Lux, Michaelyn Kochańczyk, T.; Hann, Z. S.; Lux, M. C.; Delos Reyes, A. M. V.; Ji, C.; Tan, D. S.; Lima, C. D. Structural basis for transthiolation intermediates in the ubiquitin pathway. Nature 2024, 633, 216–223. DOI: 10.1038/s41586-024-07828-9 PMID: 39143218
Delos Reyes, A. M. V.†; Lux, M. C.†; Hann, Z. S.†; Ji, C.; Kochańczyk, T.; DiBello, M.; Lima, C. D.; Tan, D. S. Design and semisynthesis of biselectrophile-functionalized ubiquitin probes to investigate transthioesterification reactions. Org. Lett. 2024, 26, 4594–4599. DOI: 10.1021/acs.orglett.4c01102 PMID: 38781175
Hann, Z. S.; Ji, C.; Olsen, S. K.; Lu, X.; Lux, M. C.; Tan, D. S.; Lima, C. D. Structural basis for adenylation and thioester bond formation in the ubiquitin E1. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 15475–15484. DOI: 10.1073/pnas.1905488116 PMID: 31235585
Lux, M. C.; Boby, M. L.; Brooks, J. L.; Tan, D. S. Synthesis of bicyclic ethers by a palladium-catalyzed oxidative cyclization-redox relay-π-allyl-Pd cyclization cascade reaction. Chem. Commun. 2019, 55, 7013–7016. DOI: 10.1039/c9cc03775f PMID: 31147660
Lux, M. C.; Standke, L. C.; Tan, D. S. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J. Antibiot. 2019, 72, 325–349. DOI: 10.1038/s41429-019-0171-2 PMID: 30982830
Maksimovic, Igor Ray, D. M.; Jennings, E. Q.; Maksimovic, I.; Chai, X.; Galligan, J. J.; David, Y.; Zheng, Q. Chemical labeling and enrichment of histone glyoxal adducts. ACS. Chem. Biol. 2022, 17, 756–761. DOI: 10.1021/acschembio.1c00864 PMID: 35294181
Maksimovic, I.; Finkin-Groner, E.; Fukase, Y.; Zheng, Q.; Sun, S.; Michino, M.; Huggins, D. J.; Myers, R. W.; David, Y. Deglycase-activity oriented screening to identify DJ-1 inhibitors. RSC Med. Chem. 2021, 12, 1232–1238. DOI: 10.1039/d1md00062d PMID: 34355187
Faulkner, S.; Maksimovic, I.; David, Y. A chemical field guide to histone nonenzymatic modifications. Curr. Opin. Chem. Biol. 2021, 63, 180–187. DOI: 10.1016/j.cbpa.2021.05.002 PMID: 34157651
Maksimovic, I.; David, Y. Non-enzymatic covalent modifications as a new chapter in the histone code. Trends Biochem. Sci. 2021, 46, 718–730. DOI: 10.1016/j.tibs.2021.04.004 PMID: 33965314
Maksimovic, I.; Zheng, Q.; Trujillo, M. N.; Galligan, J. J.; David, Y. An azidoribose probe to track ketoamine adducts in histone ribose glycation. J. Am. Chem. Soc. 2020, 142, 9999–10007. DOI: 10.1021/jacs.0c01325 PMID: 32390412
Zheng, Q.; Maksimovic, I.; Upad, A.; David, Y. Non-enzymatic covalent modifications: A new link between metabolism and epigenetics. Protein Cell 2020, 11, 401–416. DOI: 10.1007/s13238-020-00722-w PMID: 32356279
Zheng, Q.†; Maksimovic, I.†; Upad, A.; Guber, D.; David, Y. Synthesis of an alkynyl methylglyoxal probe to investigate nonenzymatic histone glycation. J. Org. Chem. 2020, 85, 1691–1697. DOI: 10.1021/acs.joc.9b02504 PMID: 31875401
Maksimovic, I.; Ray, D.; Zheng, Q.; David, Y. Utilizing intein trans-splicing for in vivo generation of site-specifically modified proteins. Meth. Enzymol. 2019, 626, 203–222. DOI: 10.1016/bs.mie.2019.07.015 PMID: 31606075
Zheng, Q.; Prescott, N. A.; Maksimovic, I.; David, Y. (De)toxifying the epigenetic code. Chem. Res. Toxicol. 2019, 32, 796–807. DOI: 10.1021/acs.chemrestox.9b00013 PMID: 30839196
Mattheisen, Jordan De Faveri, C.; Mattheisen, J. M.; Sakmar, T. P.; Coin, I. Noncanonical amino acid tools and their application to membrane protein studies. Chem. Rev. 2024, 124, 12498–12550. DOI: 10.1021/acs.chemrev.4c00181 PMID: 39509680
Kazmi, M. A.; Thaler, D. S.; Åberg, K. C.; Mattheisen, J. M.; Huber, T.; Sakmar, T. P. The Coronavirus Calendar (CoronaCal): A simplified SARS-CoV-2 test system for sampling and retrospective analysis. Front. Epidemiol. 2023, 3, 1146006. DOI: 10.3389/fepid.2023.1146006 PMID: 38455914
Mattheisen, J. M.†; Rasmussen, V. A.†; Ceraudo, E.; Kolodzinski, A.; Horioka-Duplix, M.; Sakmar, T. P.; Huber, T. Application of bioluminescence resonance energy transfer to quantitate cell-surface expression of membrane proteins. Anal. Biochem. 2024, 684, 115361. DOI: 10.1016/j.ab.2023.115361 PMID: 37865268
Mattheisen, J. M.; Limberakis, C.; Ruggeri, R. B.; Dowling, M. S.; Am Ende, C. W.; Ceraudo, E.; Huber, T.; McClendon, C. L.; Sakmar, T. P. Bioorthogonal tethering enhances drug fragment affinity for G protein-coupled receptors in live cells. J. Am. Chem. Soc. 2023, 145, 11173–11184. DOI: 10.1021/jacs.3c00972 PMID: 37116188
Mattheisen, J. M.; Wollowitz, J. S.; Huber, T.; Sakmar, T. P. Genetic code expansion to enable site-specific bioorthogonal labeling of functional G protein-coupled receptors in live cells. Protein Sci. 2023, 32, e4550. DOI: 10.1002/pro.4550 PMID: 36540928
Ceraudo, E.†; Horioka, M.†; Mattheisen, J. M.; Hitchman, T. D.; Moore, A. R.; Kazmi, M. A.; Chi, P.; Chen, Y.; Sakmar, T. P.; Huber, T. Direct evidence that the GPCR CysLTR2 mutant causative of uveal melanoma is constitutively active with highly biased signaling. J. Biol. Chem. 2021, 296, 100163. DOI: 10.1074/jbc.RA120.015352 PMID: 33288675
McBrayer, Mary Kate Zeigerer, A.; McBrayer, M. K.; McGraw, T. E. Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160. Mol. Biol. Cell 2004, 15, 4406–4415. DOI: 10.1091/mbc.E04-04-0333 PMID: 15254270
Mei, Lin Mei, L.; Reynolds, M. J.; Garbett, D.; Gong, R.; Meyer, T.; Alushin, G. M. Structural mechanism for bidirectional actin cross-linking by T-plastin. Proc. Natl. Acad. Sci. USA 2022, 119, e2205370119. DOI: 10.1073/pnas.2205370119 PMID: 36067297
Mei, L.; Espinosa de Los Reyes, S.; Reynolds, M. J.; Leicher, R.; Liu, S.; Alushin, G. M. Molecular mechanism for direct actin force-sensing by α-catenin. eLife 2020, 9, e62514. DOI: 10.7554/eLife.62514 PMID: 32969337
Sarker, M.; Lee, H. T.; Mei, L.; Krokhotin, A.; de Los Reyes, S. E.; Yen, L.; Costantini, L. M.; Griffith, J.; Dokholyan, N. V.; Alushin, G. M.; Campbell, S. L. Cardiomyopathy mutations in metavinculin disrupt regulation of vinculin-induced F-actin assemblies. J. Mol. Biol. 2019, 431, 1604–1618. DOI: 10.1016/j.jmb.2019.02.024 PMID: 30844403
Miller, Linamarie Singh, S.; Vanden Broeck, A.; Miller, L.; Chaker-Margot, M.; Klinge, S. Nucleolar maturation of the human small subunit processome. Science 2021, 373, eabj5338. DOI: 10.1126/science.abj5338 PMID: 34516797
Sanghai, Z. A.†; Miller, L.†; Molloy, K. R.; Barandun, J.; Hunziker, M.; Chaker-Margot, M.; Wang, J.; Chait, B. T.; Klinge, S. Modular assembly of the nucleolar pre-60S ribosomal subunit. Nature 2018, 556, 126–129. DOI: 10.1038/nature26156 PMID: 29512650
Mohideen, Firaz Armstrong, A. A.; Mohideen, F.; Lima, C. D. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 2012, 483, 59–63. DOI: 10.1038/nature10883 PMID: 22382979
Mohideen, F.; Capili, A. D.; Bilimoria, P. M.; Yamada, T.; Bonni, A.; Lima, C. D. A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9. Nat. Struct. Mol. Biol. 2009, 16, 945–952. DOI: 10.1038/nsmb.1648 PMID: 19684601
Mohideen, F.; Lima, C. D. SUMO takes control of a ubiquitin-specific protease. Mol. Cell 2008, 30, 539–540. DOI: 10.1016/j.molcel.2008.05.010 PMID: 18538649
Moilanen, Sirkka Moilanen, S. B.; Potuzak, J. S.; Tan, D. S. Stereocontrolled synthesis of spiroketals via Ti(Oi-Pr)4-mediated kinetic spirocyclization of glycal epoxides with retention of configuration. J. Am. Chem. Soc. 2006, 128, 1792–1793. DOI: 10.1021/ja057908f PMID: 16464069
Potuzak, J. S.; Moilanen, S. B.; Tan, D. S. Stereocontrolled synthesis of spiroketals via a remarkable methanol-induced kinetic spirocyclization reaction. J. Am. Chem. Soc. 2005, 127, 13796–13797. DOI: 10.1021/ja055033z PMID: 16201793
Moilanen, S. B.; Tan, D. S. Enantioselective synthesis of erythro-4-deoxyglycals as scaffolds for target- and diversity-oriented synthesis: new insights into glycal reactivity. Org. Biomol. Chem. 2005, 3, 798–803. DOI: 10.1039/B417429A PMID: 15731865
Potuzak, J. S.; Moilanen, S. B.; Tan, D. S. Discovery and applications of small molecule probes for studying biological processes. Biotechnol. Genet. Eng. Rev. 2004, 21, 11–78. PMID: 17017027
Morton, Jason Morton, J. G.; Draghici, C.; Kwon, L. D.; Njardarson, J. T. Rapid assembly of vinigrol’s unique carbocyclic skeleton. Org. Lett. 2009, 11, 4492–4495. DOI: 10.1021/ol901519k PMID: 19728692
Moulick, Kamalika Moulick, K.; Ahn, J. H.; Zong, H.; Rodina, A.; Cerchietti, L.; Gomes DaGama, E. M.; Caldas-Lopes, E.; Beebe, K.; Perna, F.; Hatzi, K.; Vu, L. P.; Zhao, X.; Zatorska, D.; Taldone, T.; Smith-Jones, P.; Alpaugh, M.; Gross, S. S.; Pillarsetty, N.; Ku, T.; Lewis, J. S.; Larson, S. M.; Levine, R.; Erdjument-Bromage, H.; Guzman, M. L.; Nimer, S. D.; Melnick, A.; Neckers, L.; Chiosis, G. Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat. Chem. Biol. 2011, 7, 818–826. DOI: 10.1038/nchembio.670 PMID: 21946277
Taldone, T.; Zatorska, D.; Patel, P. D.; Zong, H.; Rodina, A.; Ahn, J. H.; Moulick, K.; Guzman, M. L.; Chiosis, G. Design, synthesis, and evaluation of small molecule Hsp90 probes. Bioorg. Med. Chem. 2011, 19, 2603–2614. DOI: 10.1016/j.bmc.2011.03.013 PMID: 21459002
Ahn, J. H.; Luo, W.; Kim, J.; Rodina, A.; Clement, C. C.; Aguirre, J.; Sun, W.; Kang, Y.; Maharaj, R.; Moulick, K.; Zatorska, D.; Kokoszka, M.; Brodsky, J. L.; Chiosis, G. Design of a flexible cell-based assay for the evaluation of heat shock protein 70 expression modulators. Assay Drug Dev. Technol. 2011, 9, 236–246. DOI: 10.1089/adt.2010.0327 PMID: 21133677
Caldas-Lopes, E.; Cerchietti, L.; Ahn, J. H.; Clement, C. C.; Robles, A. I.; Rodina, A.; Moulick, K.; Taldone, T.; Gozman, A.; Guo, Y.; Wu, N.; de Stanchina, E.; White, J.; Gross, S. S.; Ma, Y.; Varticovski, L.; Melnick, A.; Chiosis, G. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 8368–8373. DOI: 10.1073/pnas.0903392106 PMID: 19416831
Du, Y.; Moulick, K.; Rodina, A.; Aguirre, J.; Felts, S.; Dingledine, R.; Fu, H.; Chiosis, G. High-throughput screening fluorescence polarization assay for tumor-specific Hsp90. J. Biomol. Screen. 2007, 12, 915–924. DOI: 10.1177/1087057107306067 PMID: 17942784
Rodina, A.; Vilenchik, M.; Moulick, K.; Aguirre, J.; Kim, J.; Chiang, A.; Litz, J.; Clement, C. C.; Kang, Y.; She, Y.; Wu, N.; Felts, S.; Wipf, P.; Massague, J.; Jiang, X.; Brodsky, J. L.; Krystal, G. W.; Chiosis, G. Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nat. Chem. Biol. 2007, 3, 498–507. DOI: 10.1038/nchembio.2007.10 PMID: 17603540
Luo, W.; Dou, F.; Rodina, A.; Chip, S.; Kim, J.; Zhao, Q.; Moulick, K.; Aguirre, J.; Wu, N.; Greengard, P.; Chiosis, G. Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 9511–9516. DOI: 10.1073/pnas.0701055104 PMID: 17517623
Moulick, K.; Clement, C. C.; Aguirre, J.; Kim, J.; Kang, Y.; Felts, S.; Chiosis, G. Synthesis of a red-shifted fluorescence polarization probe for Hsp90. Bioorg. Med. Chem. Lett. 2006, 16, 4515–4518. DOI: 10.1016/j.bmcl.2006.06.025 PMID: 16797988
Chiosis, G.; Rodina, A.; Moulick, K. Emerging Hsp90 inhibitors: from discovery to clinic. Anticancer Agents Med. Chem. 2006, 6, 1–8. DOI: 10.2174/187152006774755492 PMID: 16475922
Mulgrew-Nesbitt, Anna Nomikos, M.; Mulgrew-Nesbitt, A.; Pallavi, P.; Mihalyne, G.; Zaitseva, I.; Swann, K.; Lai, F. A.; Murray, D.; McLaughlin, S. Binding of phosphoinositide-specific phospholipase C-ζ (PLC-ζ) to phospholipid membranes: potential role of an unstructured cluster of basic residues. J. Biol. Chem. 2007, 282, 16644–16653. DOI: 10.1074/jbc.M701072200 PMID: 17430887
Mulgrew-Nesbitt, A.; Diraviyam, K.; Wang, J.; Singh, S.; Murray, P.; Li, Z.; Rogers, L.; Mirkovic, N.; Murray, D. The role of electrostatics in protein–membrane interactions. Biochim. Biophys. Acta 2006, 1761, 812–826. DOI: 10.1016/j.bbalip.2006.07.002 PMID: 16928468
Nambiar, Deepika Tsamouri, L. P.; Hsiao, J. C.; Wang, Q.; Geeson, M. B.; Huang, H. C.; Nambiar, D. R.; Zou, M.; Ball, D. P.; Chui, A. J.; Bachovchin, D. A. The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation. Cell Chem. Biol. 2024, 31, 1699–1713. DOI: 10.1016/j.chembiol.2024.06.004 PMID: 38991619
Nandakumar, Jayakrishnan Nandakumar, J.; Schwer, B.; Schaffrath, R.; Shuman, S. RNA repair: an antidote to cytotoxic eukaryal RNA damage. Mol. Cell 2008, 31, 278–286. DOI: 10.1016/j.molcel.2008.05.019 PMID: 18657509
Nair, P. A.; Nandakumar, J.; Smith, P.; Odell, M.; Lima, C. D.; Shuman, S. Structural basis for nick recognition by a minimal pluripotent DNA ligase. Nat. Struct. Mol. Biol. 2007, 14, 770–778. DOI: 10.1038/nsmb1266 PMID: 17618295
Wang, L. K.; Nandakumar, J.; Schwer, B.; Shuman, S. The C-terminal domain of T4 RNA ligase 1 confers specificity for tRNA repair. RNA 2007, 13, 1235–1244. DOI: 10.1261/rna.591807 PMID: 17585047
Keppetipola, N.; Nandakumar, J.; Shuman, S. Reprogramming the tRNA-splicing activity of a bacterial RNA repair enzyme. Nucleic Acids Res. 2007, 35, 3624–3630. DOI: 10.1093/nar/gkm110 PMID: 17488852
Nandakumar, J.; Nair, P. A.; Shuman, S. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate. Mol. Cell 2007, 26, 257–271. DOI: 10.1016/j.molcel.2007.02.026 PMID: 17466627
Nandakumar, J.; Shuman, S.; Lima, C. D. RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward. Cell 2006, 127, 71–84. DOI: 10.1016/j.cell.2006.08.038 PMID: 17018278
Zhu, H.; Nandakumar, J.; Aniukwu, J.; Wang, L. K.; Glickman, M. S.; Lima, C. D.; Shuman, S. Atomic structure and nonhomologous end-joining function of the polymerase component of bacterial DNA ligase D. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 1711–1716. DOI: 10.1073/pnas.0509083103 PMID: 16446439
Nandakumar, J.; Shuman, S. Dual mechanisms whereby a broken RNA end assists the catalysis of its repair by T4 RNA ligase 2. J. Biol. Chem. 2005, 280, 23484–23489. DOI: 10.1074/jbc.M500831200 PMID: 15851476
Nandakumar, J.; Shuman, S. How an RNA ligase discriminates RNA versus DNA damage. Mol. Cell 2004, 16, 211–221. DOI: 10.1016/j.molcel.2004.09.022 PMID: 15494308
Nandakumar, J.; Ho, C. K.; Lima, C. D.; Shuman, S. RNA substrate specificity and structure-guided mutational analysis of bacteriophage T4 RNA ligase 2. J. Biol. Chem. 2004, 279, 31337–31347. DOI: 10.1074/jbc.M402394200 PMID: 15084599
Neugroschl, Atara Hsiao, J. C.; Neugroschl, A. R.; Chui, A. J.; Taabazuing, C. Y.; Griswold, A. R.; Wang, Q.; Huang, H. C.; Orth-He, E. L.; Ball, D. P.; Hiotis, G.; Bachovchin, D. A. A ubiquitin-independent proteasome pathway controls activation of the CARD8 inflammasome. J. Biol. Chem. 2022, 298, 102032. DOI: 10.1016/j.jbc.2022.102032 PMID: 35580636
Nguyen-Duc, Thinh Nguyen-Duc, T.; Huse, M. A generalizable platform for the photoactivation of cell surface receptors. ACS Chem. Biol. 2015, 10, 2435–2440. DOI: 10.1021/acschembio.5b00372 PMID: 26295186
Paige, J. S.; Nguyen-Duc, T.; Song, W.; Jaffrey, S. R. Fluorescence imaging of cellular metabolites with RNA. Science 2012, 335, 1194. DOI: 10.1126/science.1218298 PMID: 22403384
Nieves Escobar, Christopher Delos Reyes, A. M. V.; Nieves Escobar, C. S.; Muñoz, A.; Huffman, M. I.; Tan, D. S. Direct conversion of amino acids to oxetanol bioisosteres via photoredox catalysis. Chem. Sci. 2023, 14, 10524–10531. DOI:  10.1039/D3SC00936J PMID: 37799988
O’Doherty, Inish Hind, S. R.; Strickler, S. R.; Boyle, P. C.; Dunham, D. M.; Bao, Z.; O’Doherty, I. M.; Baccile, J. A.; Hoki, J. S.; Viox, E. G.; Clarke, C. R.; Vinatzer, B. A.; Schroeder, F. C.; Martin, G. B. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat. Plants 2016, 2, 16128. DOI: 10.1038/nplants.2016.128 PMID: 27548463
Manohar, M.; Tian, M.; Moreau, M.; Park, S. W.; Choi, H. W.; Fei, Z.; Friso, G.; Asif, M.; Manosalva, P.; von Dahl, C. C.; Shi, K.; Ma, S.; Dinesh-Kumar, S. P.; O’Doherty, I.; Schroeder, F. C.; van Wijk, K. J.; Klessig, D. F. Identification of multiple salicylic acid-binding proteins using two high throughput screens. Front. Plant Sci. 2014, 5, 777. DOI: 10.3389/fpls.2014.00777 PMID: 25628632
Park, D.; O’Doherty, I.; Somvanshi, R. K.; Bethke, A.; Schroeder, F. C.; Kumar, U.; Riddle, D. L. Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 9917–9922. DOI: 10.1073/pnas.1202216109 PMID: 22665789
O’Doherty, I.; Yim, J. J.; Schmelz, E. A.; Schroeder, F. C. Synthesis of caeliferins, elicitors of plant immune responses: accessing lipophilic natural products via cross metathesis. Org. Lett. 2011, 13, 5900–5903. DOI: 10.1021/ol202541b PMID: 21992613
Orth-He, Elizabeth Chen, Q.; Wang, A.; Covelli, D. J.; Bhattacharjee, A.; Wang, Q.; Orth-He, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Hsiao, J. C.; Bachovchin, D. A. Optimized M24B aminopeptidase inhibitors for CARD8 inflammasome activation. J. Med. Chem. 2023, 66, 2589–2607. DOI: 10.1021/acs.jmedchem.2c01535 PMID: 36724486
Orth-He, E. L.†; Huang, H. C.†; Rao, S. D.; Wang, Q.; Chen, Q.; O’Mara, C. M.; Chui, A. J.; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Cross, J. R.; Bachovchin, D. A. Protein folding stress potentiates NLRP1 and CARD8 inflammasome activation. Cell Rep. 2023, 42, 111965. DOI: 10.1016/j.celrep.2022.111965 PMID: 36649711
Wang, Q.; Hsiao, J. C.; Yardeny, N.; Huang, H. C.; O’Mara, C. M.; Orth-He, E. L.; Ball, D. P.; Zhang, Z.; Bachovchin, D. A. The NLRP1 and CARD8 inflammasomes detect reductive stress. Cell Rep. 2023, 42, 111966. DOI: 10.1016/j.celrep.2022.111966 PMID: 36649710
Hsiao, J. C.; Neugroschl, A. R.; Chui, A. J.; Taabazuing, C. Y.; Griswold, A. R.; Wang, Q.; Huang, H. C.; Orth-He, E. L.; Ball, D. P.; Hiotis, G.; Bachovchin, D. A. A ubiquitin-independent proteasome pathway controls activation of the CARD8 inflammasome. J. Biol. Chem. 2022, 298, 102032. DOI: 10.1016/j.jbc.2022.102032 PMID: 35580636
Rao, S. D.†; Chen, Q.†; Wang, Q.†; Orth-He, E. L.†; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Huang, H. C.; Chui, A. J.; Covelli, D. J.; You, S.; Cross, J. R.; Bachovchin, D. A. M24B aminopeptidase inhibitors selectively activate the CARD8 inflammasome. Nat. Chem. Biol. 2022, 18, 565–574. DOI: 10.1038/s41589-021-00964-7 PMID: 35165443
Robert Hollingsworth, L.; David, L.; Li, Y.; Griswold, A. R.; Ruan, J.; Sharif, H.; Fontana, P.; Orth-He, E. L.; Fu, T. M.; Bachovchin, D. A.; Wu, H. Mechanism of filament formation in UPA-promoted CARD8 and NLRP1 inflammasomes. Nat. Commun. 2021, 12, 189. DOI: 10.1038/s41467-020-20320-y PMID: 33420033
Chui, A. J.; Griswold, A. R.; Taabazuing, C. Y.; Orth, E. L.; Gai, K.; Rao, S. D.; Ball, D. P.; Hsiao, J. C.; Bachovchin, D. A. Activation of the CARD8 inflammasome requires a disordered region. Cell Rep. 2020, 33, 108264. DOI: 10.1016/j.celrep.2020.108264 PMID: 33053349
Johnson, D. C.; Okondo, M. C.; Orth, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Bachovchin, D. A. DPP8/9 inhibitors activate the CARD8 inflammasome in resting lymphocytes. Cell Death Dis. 2020, 11, 628. DOI: 10.1038/s41419-020-02865-4 PMID: 32796818
Ball, D. P.; Taabazuing, C. Y.; Griswold, A. R.; Orth, E. L.; Rao, S. D.; Kotliar, I. B.; Vostal, L. E.; Johnson, D. C.; Bachovchin, D. A. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci. Alliance 2020, 3, e202000664. DOI: 10.26508/lsa.202000664 PMID: 32051255
Chui, A. J.; Okondo, M. C.; Rao, S. D.; Gai, K.; Griswold, A. R.; Johnson, D. C.; Ball, D. P.; Taabazuing, C. Y.; Orth, E. L.; Vittimberga, B. A.; Bachovchin, D. A. N-terminal degradation activates the NLRP1B inflammasome. Science 2019, 364, 82–85. DOI: 10.1126/science.aau1208 PMID: 30872531
Osunsade, Adewola Nguyen, T.; Li, S.; Chang, J. T.; Watters, J. W.; Ng, H.; Osunsade, A.; David, Y.; Liu, S. Chromatin sequesters pioneer transcription factor Sox2 from exerting force on DNA. Nat. Commun. 2022, 13, 3988. DOI: 10.1038/s41467-022-31738-x PMID: 35810158
Leicher, R.†; Osunsade, A.†; Chua, G. N. L.†; Faulkner, S. C.†; Latham, A. P.; Watters, J. W.; Nguyen, T.; Beckwitt, E. C.; Christodoulou-Rubalcava, S.; Young, P. G.; Zhang, B.; David, Y.; Liu, S. Single-stranded nucleic acid binding and coacervation by linker histone H1. Nat. Struct. Mol. Biol. 2022, 29, 463–471. DOI: 10.1038/s41594-022-00760-4 PMID: 35484234
Yusufova, N.; Kloetgen, A.; Teater, M.; Osunsade, A.; Camarillo, J. M.; Chin, C. R.; Doane, A. S.; Venters, B. J.; Portillo-Ledesma, S.; Conway, J.; Phillip, J. M.; Elemento, O.; Scott, D. W.; Béguelin, W.; Licht, J. D.; Kelleher, N. L.; Staudt, L. M.; Skoultchi, A. I.; Keogh, M. C.; Apostolou, E.; Mason, C. E.; Imielinski, M.; Schlick, T.; David, Y.; Tsirigos, A.; Allis, C. D.; Soshnev, A. A.; Cesarman, E.; Melnick, A. M. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature 2021, 589, 299–305. DOI: 10.1038/s41586-020-3017-y PMID: 33299181
Willcockson, M. A.; Healton, S. E.; Weiss, C. N.; Bartholdy, B. A.; Botbol, Y.; Mishra, L. N.; Sidhwani, D. S.; Wilson, T. J.; Pinto, H. B.; Maron, M. I.; Skalina, K. A.; Toro, L. N.; Zhao, J.; Lee, C. H.; Hou, H.; Yusufova, N.; Meydan, C.; Osunsade, A.; David, Y.; Cesarman, E.; Melnick, A. M.; Sidoli, S.; Garcia, B. A.; Edelmann, W.; Macian, F.; Skoultchi, A. I. H1 histones control the epigenetic landscape by local chromatin compaction. Nature 2021, 589, 293–298. DOI: 10.1038/s41586-020-3032-z PMID: 33299182
Zheng, Q.; Osunsade, A.; David, Y. Protein arginine deiminase 4 antagonizes methylglyoxal-induced histone glycation. Nat. Commun. 2020, 11, 3241. DOI: 10.1038/s41467-020-17066-y PMID: 32591537
Yusufova, N.; Teater, M. R.; Soshnev, A.; Kloetgen, A.; Osunsade, A.; Conway, J.; Doane, A.; Skoultchi, A.; Tsirigos, A.; David, Y.; Allis, C. D.; Cesarman, E.; Melnick, A. Histone 1 mutations drive lymphomagenesis by inducing primitive stem cell functions and epigenetic instructions through profound 3D re-organization of the B-cell genome. Blood 2019, 134, 23. DOI: 10.1182/blood-2019-127774 PMID: 31723979
Zheng, Q.; Omans, N. D.; Leicher, R.; Osunsade, A.; Agustinus, A. S.; Finkin-Groner, E.; D’Ambrosio, H.; Liu, B.; Chandarlapaty, S.; Liu, S.; David, Y. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nat. Commun. 2019, 10, 1289. DOI: 10.1038/s41467-019-09192-z PMID: 30894531
Osunsade, A.; Prescott, N. A.; Hebert, J. M.; Ray, D. M.; Jmeian, Y.; Lorenz, I. C.; David, Y. A robust method for the purification and characterization of recombinant human histone H1 variants. Biochemistry 2019, 58, 171–176. DOI: 10.1021/acs.biochem.8b01060 PMID: 30585724
Pagano, Nen Rodrik-Outmezguine, V. S.; Chandarlapaty, S.; Pagano, N. C.; Poulikakos, P. I.; Scaltriti, M.; Moskatel, E.; Baselga, J.; Guichard, S.; Rosen, N. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 2012, 1, 248–259. DOI: 10.1158/2159-8290.CD-11-0085 PMID: 22140653
Schatz, J. H.; Oricchio, E.; Wolfe, A. L.; Jiang, M.; Linkov, I.; Maragulia, J.; Shi, W.; Zhang, Z.; Rajasekhar, V. K.; Pagano, N. C.; Porco, J. A.; Teruya-Feldstein, J.; Rosen, N.; Zelenetz, A. D.; Pelletier, J.; Wendel, H. G. Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma. J. Exp. Med. 2011, 208, 1799–1807. DOI: 10.1084/jem.20110846 PMID: 21859846
Payne, Alexander Liu, S.; Payne, A. M.; Wang, J.; Zhu, L.; Paknejad, N.; Eng, E. T.; Liu, W.; Miao, Y.; Hite, R. K.; Huang, X. Y. Architecture and activation of single-pass transmembrane receptor guanylyl cyclase. Nat. Struct. Mol. Biol. 2024, in press. DOI: 10.1038/s41594-024-01426-z PMID: 39543315
Takaba, K.; Friedman, A. J.; Cavender, C. E.; Behara, P. K.; Pulido, I.; Henry, M. M.; MacDermott-Opeskin, H.; Iacovella, C. R.; Nagle, A. M.; Payne, A. M.; Shirts, M. R.; Mobley, D. L.; Chodera, J. D.; Wang, Y. Machine-learned molecular mechanics force fields from large-scale quantum chemical data. Chem. Sci. 2024, 15, 12861–12878. DOI: 10.1039/d4sc00690a PMID: 39148808
Boby, M. L.; Fearon, D; Ferla, M.; Filep, M.; Koekemoer, L.; Robinson, M. C.; COVID Moonshot Consortium; Chodera, J. D. … Payne, A. M. … Rufa, D. … Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors. Science 2023, 382, eabo7201. DOI: 10.1126/science.abo7201 PMID: 37943932
Khelashvili, G.; Pillai, A. N.; Lee, J.; Pandey, K.; Payne, A. M.; Siegel, Z.; Cuendet, M. A.; Lewis, T. R.; Arshavsky, V. Y.; Broichhagen, J.; Levitz, J.; Menon, A. K. Unusual mode of dimerization of retinitis pigmentosa-associated F220C rhodopsin. Sci. Rep. 2021, 11, 10536. DOI: 10.1038/s41598-021-90039-3 PMID: 34006992
Peters, Ulf Kashyap, S.; Sandler, J.; Peters, U.; Martinez, E. J.; Kapoor, T. M. Using ‘biased-privileged’ scaffolds to identify lysine methyltransferase inhibitors. Bioorg. Med. Chem. 2014, 22, 2253–2260. DOI: 10.1016/j.bmc.2014.02.024 PMID: 24650704
Brennan, I. M.; Peters, U.; Kapoor, T. M.; Straight, A. F. Polo-like kinase controls vertebrate spindle elongation and cytokinesis. PLoS ONE 2007, 2, e409. DOI: 10.1371/journal.pone.0000409 PMID: 17476331
Peters, U.; Cherian, J.; Kim, J. H.; Kwok, B. H.; Kapoor, T. M. Probing cell-division phenotype space and Polo-like kinase function using small molecules. Nat. Chem. Biol. 2006, 2, 618–626. DOI: 10.1038/nchembio826 PMID: 17028580
Llauger, L.; He, H.; Kim, J.; Aguirre, J.; Rosen, N.; Peters, U.; Davies, P.; Chiosis, G. Evaluation of 8-arylsulfanyl, 8-arylsulfoxyl, and 8-arylsulfonyl adenine derivatives as inhibitors of the heat shock protein 90. J. Med. Chem. 2005, 48, 2892–2905. DOI: 10.1021/jm049012b PMID: 15828828
Marcus, A. I.; Peters, U.; Thomas, S. L.; Garrett, S.; Zelnak, A.; Kapoor, T. M.; Giannakakou, P. Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and -sensitive cancer cells. J. Biol. Chem. 2005, 280, 11569–11577. DOI: 10.1074/jbc.M413471200 PMID: 15653676
Oaksmith, J. M.; Peters, U.; Ganem, B. Three-component condensation leading to β-amino acid diamides: convergent assembly of β-peptide analogues. J. Am. Chem. Soc. 2004, 126, 13606–13607. DOI: 10.1021/ja0450152 PMID: 15493904
Peters, U.; Kapoor, T. M. New probes for microtubule dynamics. Chem. Biol. 2004, 11, 14–16. DOI: 10.1016/j.chembiol.2004.01.003 PMID: 15112989
Prescott, Nicholas Feierman, E. R.; Louzon, S.; Prescott, N. A.; Biaco, T.; Gao, Q.; Qiu, Q.; Choi, K.; Palozola, K. C.; Voss, A. J.; Mehta, S. D.; Quaye, C. N.; Lynch, K. T.; Fuccillo, M. V.; Wu, H.; David, Y.; Korb, E. Histone variant H2BE enhances chromatin accessibility in neurons to promote synaptic gene expression and long-term memory. Mol. Cell 2024, 84, 2822-2837. DOI: 10.1016/j.molcel.2024.06.025 PMID: 39025074
Corless, B. C.; Geißen, R.; Prescott, N. A.; David, Y.; Scheinberg, D. A.; Tan, D. S. Chemoenzymatic synthesis of novel cytotoxic epoxyketones using the eponemycin biosynthetic enzyme EpnF. ACS Chem. Biol. 2023, 18, 1360–1367. DOI: 10.1021/acschembio.3c00080 PMID: 37172287
Prescott, N. A.*; Huang, H. C.* Scientific fluency as the greatest strength of chemical biologists. ChemBioChem 2023, 24, e202300053. DOI: 10.1002/cbic.202300053 PMID: 36929107
Pluta, R.; Aragón, E.; Prescott, N. A.; Ruiz, L.; Mees, R. A.; Baginski, B.; Flood, J. R.; Martin-Malpartida, P.; Massagué, J.; David, Y.; Macias, M. J. Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1. Nat. Commun. 2022, 13, 7279. DOI: 10.1038/s41467-022-34925-y PMID: 36435807
Prescott, N. A.; David, Y. In vivo histone labeling using ultrafast trans-splicing inteins. Methods Mol. Biol. 2020, 2133, 201–219. DOI: 10.1007/978-1-0716-0434-2_10 PMID: 32144669
Prescott, N. A.; Bram, Y.; Schwartz, R. E.; David, Y. Targeting hepatitis B virus covalently closed circular DNA and hepatitis B virus X protein: Recent advances and new approaches. ACS Infect. Dis. 2019, 5, 1657–1667. DOI: 10.1021/acsinfecdis.9b00249 PMID: 31525994
Zheng, Q.; Prescott, N. A.; Maksimovic, I.; David, Y. (De)toxifying the epigenetic code. Chem. Res. Toxicol. 2019, 32, 796–807. DOI: 10.1021/acs.chemrestox.9b00013 PMID: 30839196
Osunsade, A.; Prescott, N. A.; Hebert, J. M.; Ray, D. M.; Jmeian, Y.; Lorenz, I. C.; David, Y. A robust method for the purification and characterization of recombinant human histone H1 variants. Biochemistry 2019, 58, 171–176. DOI: 10.1021/acs.biochem.8b01060 PMID: 30585724
Pisa, Rudolf Pisa, R.; Kapoor, T. M. Chemical strategies to overcome resistance against targeted anticancer therapeutics. Nat. Chem. Biol. 2020, 16, 817–825. DOI: 10.1038/s41589-020-0596-8 PMID: 32694636
Pisa, R.; Phua, D. Y. Z.; Kapoor, T. M. Distinct mechanisms of resistance to a CENP-E inhibitor emerge in near-haploid and diploid cancer cells. Cell Chem. Biol. 2020, 27, 850-857.e6. DOI: 10.1016/j.chembiol.2020.05.003 PMID: 32442423
Pisa, R.; Cupido, T.; Steinman, J. B.; Jones, N. H.; Kapoor, T. M. Analyzing resistance to design selective chemical inhibitors for AAA proteins. Cell Chem. Biol. 2019, 26, 1263–1273. DOI: 10.1016/j.chembiol.2019.06.001 PMID: 31257183
Pisa, R.; Cupido, T.; Kapoor, T. M. Designing allele-specific inhibitors of spastin, a microtubule-severing AAA protein. J. Am. Chem. Soc. 2019, 141, 5602–5606. DOI: 10.1021/jacs.8b13257 PMID: 30875216
Cupido, T.; Pisa, R.; Kelley, M. E.; Kapoor, T. M. Designing a chemical inhibitor for the AAA protein spastin using active site mutations. Nat. Chem. Biol. 2019, 15, 444–452. DOI: 10.1038/s41589-019-0225-6 PMID: 30778202
Ramsey, Jared Ramsey, J. R.; Shelton, P. M. M.; Heiss, T. K.; Olinares, P. D. B.; Vostal, L. E.; Soileau, H.; Grasso, M.; Casebeer, S. W.; Adaniya, S.; Miller, M.; Sun, S.; Huggins, D. J.; Myers, R. W.; Chait, B. T.; Vinogradova, E. V.; Kapoor, T. M. Using a function-first “scout fragment”-based approach to develop allosteric covalent inhibitors of conformationally dynamic helicase mechanoenzymes. J. Am. Chem. Soc. 2024, 146, 62–67. DOI: 10.1021/jacs.3c10581 PMID: 38134034
Rangaraju, Vidhya Rangaraju, V.; Calloway, N.; Ryan, T. A. Activity-driven local ATP synthesis is required for synaptic function. Cell 2014, 156, 825–835. DOI: 10.1016/j.cell.2013.12.042 PMID: 24529383
Rao, Sahana Chen, Q.; Wang, A.; Covelli, D. J.; Bhattacharjee, A.; Wang, Q.; Orth-He, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Hsiao, J. C.; Bachovchin, D. A. Optimized M24B aminopeptidase inhibitors for CARD8 inflammasome activation. J. Med. Chem. 2023, 66, 2589–2607. DOI: 10.1021/acs.jmedchem.2c01535 PMID: 36724486
Orth-He, E. L.†; Huang, H. C.†; Rao, S. D.; Wang, Q.; Chen, Q.; O’Mara, C. M.; Chui, A. J.; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Cross, J. R.; Bachovchin, D. A. Protein folding stress potentiates NLRP1 and CARD8 inflammasome activation. Cell Rep. 2023, 42, 111965. DOI: 10.1016/j.celrep.2022.111965 PMID: 36649711
Ball, D. P.; Tsamouri, L. P.; Wang, A. E.; Huang, H. C.; Warren, C. D.; Wang, Q.; Edmondson, I. H.; Griswold, A. R.; Rao, S. D.; Johnson, D. C.; Bachovchin, D. A. Oxidized thioredoxin-1 restrains the NLRP1 inflammasome. Sci. Immunol. 2022, 7, eabm7200. DOI: 10.1126/sciimmunol.abm7200 PMID: 36332009
Rao, S. D.†; Chen, Q.†; Wang, Q.†; Orth-He, E. L.†; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Huang, H. C.; Chui, A. J.; Covelli, D. J.; You, S.; Cross, J. R.; Bachovchin, D. A. M24B aminopeptidase inhibitors selectively activate the CARD8 inflammasome. Nat. Chem. Biol. 2022, 18, 565–574. DOI: 10.1038/s41589-021-00964-7 PMID: 35165443
Chui, A. J.; Griswold, A. R.; Taabazuing, C. Y.; Orth, E. L.; Gai, K.; Rao, S. D.; Ball, D. P.; Hsiao, J. C.; Bachovchin, D. A. Activation of the CARD8 inflammasome requires a disordered region. Cell Rep. 2020, 33, 108264. DOI: 10.1016/j.celrep.2020.108264 PMID: 33053349
Johnson, D. C.; Okondo, M. C.; Orth, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Bachovchin, D. A. DPP8/9 inhibitors activate the CARD8 inflammasome in resting lymphocytes. Cell Death Dis. 2020, 11, 628. DOI: 10.1038/s41419-020-02865-4 PMID: 32796818
Ball, D. P.; Taabazuing, C. Y.; Griswold, A. R.; Orth, E. L.; Rao, S. D.; Kotliar, I. B.; Vostal, L. E.; Johnson, D. C.; Bachovchin, D. A. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci. Alliance 2020, 3, e202000664. DOI: 10.26508/lsa.202000664 PMID: 32051255
Griswold, A. R.; Ball, D. P.; Bhattacharjee, A.; Chui, A. J.; Rao, S. D.; Taabazuing, C. Y.; Bachovchin, D. A. DPP9’s enzymatic activity and not its binding to CARD8 inhibits inflammasome activation. ACS Chem. Biol. 2019, 14, 2424–2429. DOI: 10.1021/acschembio.9b00462 PMID: 31525884
Gai, K.; Okondo, M. C.; Rao, S. D.; Chui, A. J.; Ball, D. P.; Johnson, D. C.; Bachovchin, D. A. DPP8/9 inhibitors are universal activators of functional NLRP1 alleles. Cell Death. Dis. 2019, 10, 587. DOI: 10.1038/s41419-019-1817-5 PMID: 31383852
Griswold, A. R.; Cifani, P.; Rao, S. D.; Axelrod, A. J.; Miele, M. M.; Hendrickson, R. C.; Kentsis, A.; Bachovchin, D. A. A chemical strategy for protease substrate profiling. Cell Chem. Biol. 2019, 26, 901–907. DOI: 10.1016/j.chembiol.2019.03.007 PMID: 31006619
Chui, A. J.; Okondo, M. C.; Rao, S. D.; Gai, K.; Griswold, A. R.; Johnson, D. C.; Ball, D. P.; Taabazuing, C. Y.; Orth, E. L.; Vittimberga, B. A.; Bachovchin, D. A. N-terminal degradation activates the NLRP1B inflammasome. Science 2019, 364, 82–85. DOI: 10.1126/science.aau1208 PMID: 30872531
Johnson, D. C.; Taabazuing, C. Y.; Okondo, M. C.; Chui, A. J.; Rao, S. D.; Brown, F. C.; Reed, C.; Peguero, E.; de Stanchina, E.; Kentsis, A.; Bachovchin, D. A. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 2018, 24, 1151–1156. DOI: 10.1038/s41591-018-0082-y PMID: 29967349
Okondo, M. C.; Rao, S. D.; Taabazuing, C. Y.; Chui, A. J.; Poplawski, S. E.; Johnson, D. C.; Bachovchin, D. A. Inhibition of Dpp8/9 activates the Nlrp1b inflammasome. Cell Chem. Biol. 2018, 25, 262–267. DOI: 10.1016/j.chembiol.2017.12.013 PMID: 29396289
Ghazizadeh, Z.; Kao, D. I.; Amin, S.; Cook, B.; Rao, S.; Zhou, T.; Zhang, T.; Xiang, Z.; Kenyon, R.; Kaymakcalan, O.; Liu, C.; Evans, T.; Chen, S. ROCKII inhibition promotes the maturation of human pancreatic beta-like cells. Nat. Commun. 2017, 8, 298. DOI: 10.1038/s41467-017-00129-y PMID: 28824164
Ray, Devin Ray, D.; Flood, J.; David, Y. Harnessing split-inteins as a tool for the selective modification of surface receptors in live cells. ChemBioChem 2023, 24, e202200487. DOI: 10.1002/cbic.202200487 PMID: 36178424
Ray, D. M.; Jennings, E. Q.; Maksimovic, I.; Chai, X.; Galligan, J. J.; David, Y.; Zheng, Q. Chemical labeling and enrichment of histone glyoxal adducts. ACS. Chem. Biol. 2022, 17, 756–761. DOI: 10.1021/acschembio.1c00864 PMID: 35294181
Maksimovic, I.; Ray, D.; Zheng, Q.; David, Y. Utilizing intein trans-splicing for in vivo generation of site-specifically modified proteins. Meth. Enzymol. 2019, 626, 203–222. DOI: 10.1016/bs.mie.2019.07.015 PMID: 31606075
Osunsade, A.; Prescott, N. A.; Hebert, J. M.; Ray, D. M.; Jmeian, Y.; Lorenz, I. C.; David, Y. A robust method for the purification and characterization of recombinant human histone H1 variants. Biochemistry 2019, 58, 171–176. DOI: 10.1021/acs.biochem.8b01060 PMID: 30585724
Repeta, Lucas Ghosh, S.; Ejaz, A.; Repeta, L.; Shuman, S. Pseudomonas putida MPE, a manganese-dependent endonuclease of the binuclear metallophosphoesterase superfamily, incises single-strand DNA in two orientations to yield a mixture of 3´-PO4 and 3´-OH termini. Nucleic Acids Res 2021, 49, 1023–1032. DOI: 10.1093/nar/gkaa1214 PMID: 33367848
Rico, Carlos Rico, C. A.; Berchiche, Y. A.; Horioka, M.; Peeler, J. C.; Lorenzen, E.; Tian, H.; Kazmi, M. A.; Fürstenberg, A.; Gaertner, H.; Hartley, O.; Sakmar, T. P.; Huber, T. High-affinity binding of chemokine analogs that display ligand bias at the HIV-1 coreceptor CCR5. Biophys. J. 2019, 117, 903–919. DOI: 10.1016/j.bpj.2019.07.043 PMID: 31421836
Lorenzen, E.; Ceraudo, E.; Berchiche, Y. A.; Rico, C. A.; Fürstenberg, A.; Sakmar, T. P.; Huber, T. G protein subtype-specific signaling bias in a series of CCR5 chemokine analogs. Sci. Signal. 2018, 11, eaao6152. DOI: 10.1126/scisignal.aao6152 PMID: 30327411
Staljanssens, D.; Rico, C. A.; Park, M.; Van Camp, J.; Yu, N.; Huber, T.; Sakmar, T. P.; Smagghe, G. Development of a CCK1R-membrane nanoparticle as a fish-out tool for bioactive peptides. Peptides 2015, 68, 219–227. DOI: 10.1016/j.peptides.2014.10.015 PMID: 25451329
Rosenzweig, Adam MacIntyre, L. W.; Koirala, B.; Rosenzweig, A.; Morales-Amador, A.; Brady, S. F. Cinnamosyn, a cinnamoylated synthetic-bioinformatic natural product with cytotoxic activity. Org. Lett. 2024, 26, 4433–4437. DOI: 10.1021/acs.orglett.4c00999 PMID: 38767867
Rosenzweig, A.†; Spotton, K.†; Bhattacharjee, A.; Morales-Amador, A.; Brady, S. F. Identification of an optimized clinical development candidate from cilagicin, an antibiotic that evades resistance by dual polyprenyl phosphate binding. ACS Infect. Dis. 2024, 10, 1536–1544. DOI: 10.1021/acsinfecdis.4c00018 PMID: 38626307
Rosenzweig, A. F.; Wang, Z.; Morales-Amador, A.; Spotton, K.; Brady, S. F. A family of antibiotics that evades resistance by binding polyprenyl phosphates. ACS Infect. Dis. 2023, 9, 2394–2400. DOI: 10.1021/acsinfecdis.3c00475 PMID: 37937847
Rosenzweig, A. F.†; Burian, J.†; Brady, S. F. Present and future outlooks on environmental DNA-based methods for antibiotic discovery. Curr. Opin. Microbiol. 2023, 75, 102335. DOI: 10.1016/j.mib.2023.102335 PMID: 37327680
Rufa, Dominic Boby, M. L.; Fearon, D; Ferla, M.; Filep, M.; Koekemoer, L.; Robinson, M. C.; COVID Moonshot Consortium; Chodera, J. D. … Payne, A. M. … Rufa, D. … Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors. Science 2023, 382, eabo7201. DOI: 10.1126/science.abo7201 PMID: 37943932
Zhang, I.; Rufa, D. A.; Pulido, I.; Henry, M. M.; Rosen, L. E.; Hauser, K.; Singh, S.; Chodera, J. D. Identifying and overcoming the sampling challenges in relative binding free energy calculations of a model protein:protein complex. J. Chem. Theory Comput. 2023, 19, 4863–4882. DOI: 10.1021/acs.jctc.3c00333 PMID: 37450482
Wang, Y.; Fass, J.; Kaminow, B.; Herr, J. E.; Rufa, D.; Zhang, I.; Pulido, I.; Henry, M.; Bruce Macdonald, H. E.; Takaba, K.; Chodera, J. D. End-to-end differentiable construction of molecular mechanics force fields. Chem. Sci. 2022, 13, 12016–12033. DOI: 10.1039/d2sc02739a PMID: 36349096
Pati, A. K.; El Bakouri, O.; Jockusch, S.; Zhou, Z.; Altman, R. B.; Fitzgerald, G. A.; Asher, W. B.; Terry, D. S.; Borgia, A.; Holsey, M. D.; Batchelder, J. E.; Abeywickrama, C.; Huddle, B.; Rufa, D.; Javitch, J. A.; Ottosson, H.; Blanchard, S. C. Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 24305–24315. DOI: 10.1073/pnas.2006517117 PMID: 32913060
Rundlet, Emily Holm, M.†; Natchiar, S. K.†; Rundlet, E. J.†; Myasnikov, A. G.; Watson, Z. L.; Altman, R. B.; Wang, H. Y.; Taunton, J.; Blanchard, S. C. mRNA decoding in human is kinetically and structurally distinct from bacteria. Nature 2023, 617, 200–207. DOI: 10.1038/s41586-023-05908-w PMID: 37020024
Juette, M. F.†; Carelli, J. D.†; Rundlet, E. J.†; Brown, A.; Shao, S.; Ferguson, A.; Wasserman, M. R.; Holm, M.; Taunton, J.; Blanchard, S. C. Didemnin B and ternatin-4 differentially inhibit conformational changes in eEF1A required for aminoacyl-tRNA accommodation into mammalian ribosomes. eLife 2022, 11, e81608. DOI: 10.7554/eLife.81608 PMID: 36264623
Nishima, W.; Girodat, D.; Holm, M.; Rundlet, E. J.; Alejo, J. L.; Fischer, K.; Blanchard, S. C.; Sanbonmatsu, K. Y. Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting. Nucleic Acids Res. 2022, 50, 8302–8320. DOI: 10.1093/nar/gkac597 PMID: 35808938
Wieland, M.; Holm, M.; Rundlet, E. J.; Morici, M.; Koller, T. O.; Maviza, T. P.; Pogorevc, D.; Osterman, I. A.; Müller, R.; Blanchard, S. C.; Wilson, D. N. The cyclic octapeptide antibiotic argyrin B inhibits translation by trapping EF-G on the ribosome during translocation. Proc. Natl. Acad. Sci. USA 2022, 119, e2114214119. DOI: 10.1073/pnas.2114214119 PMID: 35500116
Rundlet, E. J.; Holm, M.; Schacherl, M.; Natchiar, S. K.; Altman, R. B.; Spahn, C. M. T.; Myasnikov, A. G.; Blanchard, S. C. Structural basis of early translocation events on the ribosome. Nature 2021, 595, 741–745. DOI: 10.1038/s41586-021-03713-x PMID: 34234344
Flis, J.; Holm, M.; Rundlet, E. J.; Loerke, J.; Hilal, T.; Dabrowski, M.; Bürger, J.; Mielke, T.; Blanchard, S. C.; Spahn, C. M. T.; Budkevich, T. V. tRNA translocation by the eukaryotic 80S ribosome and the impact of GTP hydrolysis. Cell Rep. 2018, 25, 2676–2688. DOI: 10.1016/j.celrep.2018.11.040 PMID: 30517857
Saca, Victoria R. Saca, V. R.; Burdette, C.; Sakmar, T. P. GPCR biosensors to study conformational dynamics and signaling in drug discovery. Annu. Rev. Pharmacol. Toxicol. 2024, in press. DOI: 10.1146/annurev-pharmtox-061724-080836 PMID: 39298797
Huber, T.; Horioka-Duplix, M.; Chen, Y.; Saca, V. R.; Ceraudo, E.; Chen, Y.; Sakmar, T. P. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci. Signal. 2024, 17, eadp3967. DOI: 10.1126/scisignal.adp3967 PMID: 39288219
Mattheisen, J. M.†; Rasmussen, V. A.†; Ceraudo, E.; Kolodzinski, A.; Horioka-Duplix, M.; Sakmar, T. P.; Huber, T. Application of bioluminescence resonance energy transfer to quantitate cell-surface expression of membrane proteins. Anal. Biochem. 2024, 684, 115361. DOI: 10.1016/j.ab.2023.115361 PMID: 37865268
Samai, Poulami Samai, P.; Shuman, S. Kinetic analysis of DNA strand joining by Chlorella virus DNA ligase and the role of nucleotidyltransferase motif VI in ligase adenylylation. J. Biol. Chem. 2012, 287, 28609–28618. DOI: 10.1074/jbc.M112.380428 PMID: 22745124
Samai, P.; Shuman, S. Structure-function analysis of the OB and latch domains of Chlorella virus DNA ligase. J. Biol. Chem. 2011, 286, 22642–22652. DOI: 10.1074/jbc.M111.245399 PMID: 21527793
Samai, P.; Shuman, S. Functional dissection of the DNA interface of the nucleotidyltransferase domain of Chlorella virus DNA ligase. J. Biol. Chem. 2011, 286, 13314–13326. DOI: 10.1074/jbc.M111.226191 PMID: 21335605
Samai, P.; Smith, P.; Shuman, S. Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010, 66, 1552–1556. DOI: 10.1107/S1744309110039801 PMID: 21139194
Santarossa, Cristina Santarossa, C. C.; Mickolajczyk, K. J.; Steinman, J. B.; Urnavicius, L.; Chen, N.; Hirata, Y.; Fukase, Y.; Coudray, N.; Ekiert, D. C.; Bhabha, G.; Kapoor, T. M. Targeting allostery in the Dynein motor domain with small molecule inhibitors. Cell Chem. Biol. 2021, 28, 1460-1473.e15. DOI: 10.1016/j.chembiol.2021.04.024 PMID: 34015309
Steinman, J. B.; Santarossa, C. C.; Miller, R. M.; Yu, L. S.; Serpinskaya, A. S.; Furukawa, H.; Morimoto, S.; Tanaka, Y.; Nishitani, M.; Asano, M.; Zalyte, R.; Ondrus, A. E.; Johnson, A. G.; Ye, F.; Nachury, M. V.; Fukase, Y.; Aso, K.; Foley, M. A.; Gelfand, V. I.; Chen, J. K.; Carter, A. P.; Kapoor, T. M. Chemical structure-guided design of dynapyrazoles, potent cell-permeable dynein inhibitors with a unique mode of action. eLife 2017, 6, e25174. DOI: 10.7554/eLife.25174 PMID: 28524820
Rodina, A.; Taldone, T.; Kang, Y.; Patel, P. D.; Koren, J.; Yan, P.; DaGama Gomes, E. M.; Yang, C.; Patel, M. R.; Shrestha, L.; Ochiana, S. O.; Santarossa, C.; Maharaj, R.; Gozman, A.; Cox, M. B.; Erdjument-Bromage, H.; Hendrickson, R. C.; Cerchietti, L.; Melnick, A.; Guzman, M. L.; Chiosis, G. Affinity purification probes of potential use to investigate the endogenous Hsp70 interactome in cancer. ACS Chem. Biol. 2014, 9, 1698–1705. DOI: 10.1021/cb500256u PMID: 24934503
Sanyal, Sumana Menon, I.; Huber, T.; Sanyal, S.; Banerjee, S.; Barré, P.; Canis, S.; Warren, J. D.; Hwa, J.; Sakmar, T. P.; Menon, A. K. Opsin is a phospholipid flippase. Curr. Biol. 2011, 21, 149–153. DOI: 10.1016/j.cub.2010.12.031 PMID: 21236677
Sanyal, S.; Menon, A. K. Stereoselective transbilayer translocation of mannosyl phosphoryl dolichol by an endoplasmic reticulum flippase. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 11289–11294. DOI: 10.1073/pnas.1002408107 PMID: 20534553
Sanyal, S.; Menon, A. K. Flipping lipids: why an’ what’s the reason for?. ACS Chem. Biol. 2009, 4, 895–909. DOI: 10.1021/cb900163d PMID: 19689162
Sanyal, S.; Menon, A. K. Specific transbilayer translocation of dolichol-linked oligosaccharides by an endoplasmic reticulum flippase. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 767–772. DOI: 10.1073/pnas.0810225106 PMID: 19129492
Frank, C. G.; Sanyal, S.; Rush, J. S.; Waechter, C. J.; Menon, A. K. Does Rft1 flip an N-glycan lipid precursor? Nature 2008, 454, E3–E4. DOI: 10.1038/nature07165 PMID: 18668045
Sanyal, S.; Frank, C. G.; Menon, A. K. Distinct flippases translocate glycerophospholipids and oligosaccharide diphosphate dolichols across the endoplasmic reticulum. Biochemistry 2008, 47, 7937–7946. DOI: 10.1021/bi800723n PMID: 18597486
Sutterwala, S. S.; Creswell, C. H.; Sanyal, S.; Menon, A. K.; Bangs, J. D. De novo sphingolipid synthesis is essential for viability, but not for transport of glycosylphosphatidylinositol-anchored proteins, in African trypanosomes. Eukaryotic Cell 2007, 6, 454–464. DOI: 10.1128/EC.00283-06 PMID: 17220466
Ser, Zheng Kwok, N.; Aretz, Z.; Takao, S.; Ser, Z.; Cifani, P.; Kentsis, A. Integrative proteogenomics using ProteomeGenerator2. J. Proteome Res. 2023, 22, 2750–2764. DOI: 10.1021/acs.jproteome.3c00005 PMID: 37418425
Yu, Y.; Li, S.; Ser, Z.; Sanyal, T.; Choi, K.; Wan, B.; Kuang, H.; Sali, A.; Kentsis, A.; Patel, D. J.; Zhao, X. Integrative analysis reveals unique structural and functional features of the Smc5/6 complex. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2026844118. DOI: 10.1073/pnas.2026844118 PMID: 33941673
Ser, Z.; Cifani, P.; Kentsis, A. Optimized cross-linking mass spectrometry for in situ interaction proteomics. J. Proteome Res. 2019, 18, 2545–2558. DOI: 10.1021/acs.jproteome.9b00085 PMID: 31083951
Shea, Christie Schild, T.; McReynolds, M. R.; Shea, C.; Low, V.; Schaffer, B. E.; Asara, J. M.; Piskounova, E.; Dephoure, N.; Rabinowitz, J. D.; Gomes, A. P.; Blenis, J. NADK is activated by oncogenic signaling to sustain pancreatic ductal adenocarcinoma. Cell Rep. 2021, 35, 109238. DOI: 10.1016/j.celrep.2021.109238 PMID: 34133937
Shi, Yuan Shi, Y.; Wilmot, J. T.; Nordstrøm, L. U.; Tan, D. S.; Gin, D. Y. Total synthesis, relay synthesis, and structural confirmation of the C18-norditerpenoid alkaloid neofinaconitine. J. Am. Chem. Soc. 2013, 135, 14313–14320. DOI: 10.1021/ja4064958 PMID: 24040959
Singhai, Amit Jayant, K.; Singhai, A.; Cao, Y.; Phelps, J. B.; Lindau, M.; Holowka, D. A.; Baird, B. A.; Kan, E. C. Non-Faradaic electrochemical detection of exocytosis from mast and chromaffin cells using floating-gate MOS transistors. Sci Rep 2015, 5, 18477. DOI: 10.1038/srep18477 PMID: 26686301
Singhai, A.; Wakefield, D. L.; Bryant, K. L.; Hammes, S. R.; Holowka, D.; Baird, B. Spatially defined EGF receptor activation reveals an F-actin-dependent phospho-Erk signaling complex. Biophys. J. 2014, 107, 2639–2651. DOI: 10.1016/j.bpj.2014.09.048 PMID: 25468343
Singla, Nikhil Singla, N.; Erdjument-Bromage, H.; Himanen, J. P.; Muir, T. W.; Nikolov, D. B. A semisynthetic Eph receptor tyrosine kinase provides insight into ligand-induced kinase activation. Chem. Biol. 2011, 18, 361–371. DOI: 10.1016/j.chembiol.2011.01.011 PMID: 21439481
Singla, N.; Goldgur, Y.; Xu, K.; Paavilainen, S.; Nikolov, D. B.; Himanen, J. P. Crystal structure of the ligand-binding domain of the promiscuous EphA4 receptor reveals two distinct conformations. Biochem. Biophys. Res. Commun. 2010, 399, 555–559. DOI: 10.1016/j.bbrc.2010.07.109 PMID: 20678482
Singla, N.; Himanen, J. P.; Muir, T. W.; Nikolov, D. B. Toward the semisynthesis of multidomain transmembrane receptors: modification of Eph tyrosine kinases. Protein Sci. 2008, 17, 1740–1747. DOI: 10.1110/ps.035659.108 PMID: 18628240
Soileau, Heather Ramsey, J. R.; Shelton, P. M. M.; Heiss, T. K.; Olinares, P. D. B.; Vostal, L. E.; Soileau, H.; Grasso, M.; Casebeer, S. W.; Adaniya, S.; Miller, M.; Sun, S.; Huggins, D. J.; Myers, R. W.; Chait, B. T.; Vinogradova, E. V.; Kapoor, T. M. Using a function-first “scout fragment”-based approach to develop allosteric covalent inhibitors of conformationally dynamic helicase mechanoenzymes. J. Am. Chem. Soc. 2024, 146, 62–67. DOI: 10.1021/jacs.3c10581 PMID: 38134034
Spotton, Kaylyn Rosenzweig, A.†; Spotton, K.†; Bhattacharjee, A.; Morales-Amador, A.; Brady, S. F. Identification of an optimized clinical development candidate from cilagicin, an antibiotic that evades resistance by dual polyprenyl phosphate binding. ACS Infect. Dis. 2024, 10, 1536–1544. DOI: 10.1021/acsinfecdis.4c00018 PMID: 38626307
Rosenzweig, A. F.; Wang, Z.; Morales-Amador, A.; Spotton, K.; Brady, S. F. A family of antibiotics that evades resistance by binding polyprenyl phosphates. ACS Infect. Dis. 2023, 9, 2394–2400. DOI: 10.1021/acsinfecdis.3c00475 PMID: 37937847
Stella, Gianna Stella, G.; Marraffini, L. Type III CRISPR-Cas: Beyond the Cas10 effector complex. Trends Biochem. Sci. 2024, 49, 28–37. DOI: 10.1016/j.tibs.2023.10.006 PMID: 37949766
Stella, G.* Sharing failure as a graduate student. ChemBioChem 2023, 24, e202300104. DOI: 10.1002/cbic.202300104 PMID: n/a
Huber, T.; Goldman, O.; Epstein, A. E.; Stella, G.; Sakmar, T. P. Principles and practice for SARS-CoV-2 decontamination of N95 masks with UV-C. Biophys J 2021, 120, 2927–2942. DOI: 10.1016/j.bpj.2021.02.039 PMID: 33675766
Stern, Chaya Qiu, Y.; Smith, D. G. A.; Boothroyd, S.; Jang, H.; Hahn, D. F.; Wagner, J.; Bannan, C. C.; Gokey, T.; Lim, V. T.; Stern, C. D.; Rizzi, A.; Tjanaka, B.; Tresadern, G.; Lucas, X.; Shirts, M. R.; Gilson, M. K.; Chodera, J. D.; Bayly, C. I.; Mobley, D. L.; Wang, L. P. Development and benchmarking of Open Force Field v1.0.0-the Parsley small-molecule force field. J. Chem. Theory Comput. 2021, 17, 6262–6280. DOI: 10.1021/acs.jctc.1c00571 PMID: 34551262
Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao, Y.; Beauchamp, K. A.; Wang, L. P.; Simmonett, A. C.; Harrigan, M. P.; Stern, C. D.; Wiewiora, R. P.; Brooks, B. R.; Pande, V. S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017, 13, e1005659. DOI: 10.1371/journal.pcbi.1005659 PMID: 28746339
Stratton, Christopher Stratton, C. F.; Newman, D. J.; Tan, D. S. Cheminformatic comparison of approved drugs from natural product versus synthetic origins. Bioorg. Med. Chem. Lett. 2015, 25, 4802–4807. DOI: 10.1016/j.bmcl.2015.07.014 PMID: 26254944
Wenderski, T. A.; Stratton, C. F.; Bauer, R. A.; Kopp, F.; Tan, D. S. Principal component analysis as a tool for library design: a case study investigating natural products, brand-name drugs, natural product-like libraries, and drug-like libraries. Methods Mol. Biol. 2015, 1263, 225–242. DOI: 10.1007/978-1-4939-2269-7_18 PMID: 25618349
Kopp, F.; Stratton, C. F.; Akella, L. B.; Tan, D. S. A diversity-oriented synthesis approach to macrocycles via oxidative ring expansion. Nat. Chem. Biol. 2012, 8, 358–365. DOI: 10.1038/nchembio.911 PMID: 22406518 († = co-first authors)
Strauss, Alexa Strauss, A.; Gonzalez-Hernandez, A. J.; Lee, J.; Abreu, N.; Selvakumar, P.; Salas-Estrada, L.; Kristt, M.; Arefin, A.; Huynh, K.; Marx, D. C.; Gilliland, K.; Melancon, B. J.; Filizola, M.; Meyerson, J.; Levitz, J. Structural basis of positive allosteric modulation of metabotropic glutamate receptor activation and internalization. Nat. Commun. 2024, 15, 6498. DOI: 10.1038/s41467-024-50548-x PMID: 39090128
Thibado, J. K.; Tano, J. Y.; Lee, J.; Salas-Estrada, L.; Provasi, D.; Strauss, A.; Marcelo Lamim Ribeiro, J.; Xiang, G.; Broichhagen, J.; Filizola, M.; Lohse, M. J.; Levitz, J. Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors. eLife 2021, 10, e67027. DOI: 10.7554/eLife.67027 PMID: 33880992
Subbotin, Roman Hakhverdyan, Z.; Molloy, K. R.; Subbotin, R. I.; Fernandez-Martinez, J.; Chait, B. T.; Rout, M. P. Measuring in vivo protein turnover and exchange in yeast macromolecular assemblies. STAR Protoc. 2021, 2, 100800. DOI: 10.1016/j.xpro.2021.100800 PMID: 34527957
Hakhverdyan, Z.; Molloy, K. R.; Keegan, S.; Herricks, T.; Lepore, D. M.; Munson, M.; Subbotin, R. I.; Fenyö, D.; Aitchison, J. D.; Fernandez-Martinez, J.; Chait, B. T.; Rout, M. P. Dissecting the structural dynamics of the nuclear pore complex. Mol. Cell 2021, 81, 153-165. DOI: 10.1016/j.molcel.2020.11.032 PMID: 33333016
Delgado-Benito, V.; Rosen, D. B.; Wang, Q.; Gazumyan, A.; Pai, J. A.; Oliveira, T. Y.; Sundaravinayagam, D.; Zhang, W.; Andreani, M.; Keller, L.; Kieffer-Kwon, K. R.; Pękowska, A.; Jung, S.; Driesner, M.; Subbotin, R. I.; Casellas, R.; Chait, B. T.; Nussenzweig, M. C.; Di Virgilio, M. The chromatin reader ZMYND8 regulates IgH enhancers to promote immunoglobulin class switch recombination. Mol. Cell 2018, 72, 636–649. DOI: 10.1016/j.molcel.2018.08.042 PMID: 30293785
Subbotin, R. I.; Chait, B. T. A pipeline for determining protein-protein interactions and proximities in the cellular milieu. Mol. Cell Proteomics 2014, 13, 2824–2835. DOI: 10.1074/mcp.M114.041095 PMID: 25172955
Chakravarty, A. K.; Subbotin, R.; Chait, B. T.; Shuman, S. RNA ligase RtcB splices 3´-phosphate and 5´-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3´)pp(5´)G intermediates. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 6072–6077. DOI: 10.1073/pnas.1201207109 PMID: 22474365
Tan, Lei Subramanian, R.; Ti, S. C.; Tan, L.; Darst, S. A.; Kapoor, T. M. Marking and measuring single microtubules by PRC1 and kinesin-4. Cell 2013, 154, 377–390. DOI: 10.1016/j.cell.2013.06.021 PMID: 23870126
Tan, L.; Kapoor, T. M. Examining the dynamics of chromosomal passenger complex (CPC)-dependent phosphorylation during cell division. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 16675–16680. DOI: 10.1073/pnas.1106748108 PMID: 21949386
Tseng, B. S.; Tan, L.; Kapoor, T. M.; Funabiki, H. Dual detection of chromosomes and microtubules by the chromosomal passenger complex drives spindle assembly. Dev. Cell 2010, 18, 903–912. DOI: 10.1016/j.devcel.2010.05.018 PMID: 20627073
Tian, He Tian, H.; Sakmar, T. P.; Huber, T. The energetics of chromophore binding in the visual photoreceptor rhodopsin. Biophys. J. 2017, 113, 60–72. DOI: 10.1016/j.bpj.2017.05.036 PMID: 28700926
Tian, H.; Sakmar, T. P.; Huber, T. Measurement of slow spontaneous release of 11-cis-retinal from rhodopsin. Biophys. J. 2017, 112, 153–161. DOI: 10.1016/j.bpj.2016.12.005 PMID: 28076806
Tian, H.; Sakmar, T. P.; Huber, T. A simple method for enhancing the bioorthogonality of cyclooctyne reagent. Chem. Commun. (Camb.) 2016, 52, 5451–5454. DOI: 10.1039/c6cc01321j PMID: 27009873
Park, M.; Tian, H.; Naganathan, S.; Sakmar, T. P.; Huber, T. Quantitative multi-color detection strategies for bioorthogonally labeled GPCRs. Methods Mol. Biol. 2015, 1335, 67–93. DOI: 10.1007/978-1-4939-2914-6_6 PMID: 26260595
Tian, H.; Sakmar, T. P.; Huber, T. Micelle-enhanced bioorthogonal labeling of genetically encoded azido groups on the lipid-embedded surface of a GPCR. ChemBioChem 2015, 16, 1314–1322. DOI: 10.1002/cbic.201500030 PMID: 25962668
Naganathan, S.; Ray-Saha, S.; Park, M.; Tian, H.; Sakmar, T. P.; Huber, T. Multiplex detection of functional G protein-coupled receptors harboring site-specifically modified unnatural amino acids. Biochemistry 2015, 54, 776–786. DOI: 10.1021/bi501267x PMID: 25524496
Tian, H.; Naganathan, S.; Kazmi, M. A.; Schwartz, T. W.; Sakmar, T. P.; Huber, T. Bioorthogonal fluorescent labeling of functional G-protein-coupled receptors. ChemBioChem 2014, 15, 1820–1829. DOI: 10.1002/cbic.201402193 PMID: 25045132
Tian, H.; Sakmar, T. P.; Huber, T. Site-specific labeling of genetically encoded azido groups for multicolor, single-molecule fluorescence imaging of GPCRs. Methods Cell Biol. 2013, 117, 267–303. DOI: 10.1016/B978-0-12-408143-7.00015-3 PMID: 24143983
Naganathan, S.; Grunbeck, A.; Tian, H.; Huber, T.; Sakmar, T. P. Genetically-encoded molecular probes to study G protein-coupled receptors. J. Vis. Exp. 2013, e50588. DOI: 10.3791/50588 PMID: 24056801
Huber, T.; Naganathan, S.; Tian, H.; Ye, S.; Sakmar, T. P. Unnatural amino acid mutagenesis of GPCRs using amber codon suppression and bioorthogonal labeling. Meth. Enzymol. 2013, 520, 281–305. DOI: 10.1016/B978-0-12-391861-1.00013-7 PMID: 23332705
Trotta, Adam Trotta, A. H.* Toward a unified total synthesis of the xiamycin and oridamycin families of indolosesquiterpenes. J. Org. Chem. 2017, 82, 13500–13516. DOI: 10.1021/acs.joc.7b02623 PMID: 29171266
Trotta, A. H.* Total synthesis of oridamycins A and B. Org. Lett. 2015, 17, 3358–3361. DOI: 10.1021/acs.orglett.5b01629 PMID: 26069989
Tsukidate, Taku Tsukidate, T.; Hespen, C. W.; Hang, H. C. Small molecule modulators of immune pattern recognition receptors. RSC Chem. Biol. 2023, 4, 1014–1036. DOI: 10.1039/d3cb00096f PMID: 38033733
Griffin, M. E.†; Tsukidate, T.†; Hang, H. C. N-Arylpyrazole NOD2 agonists promote immune checkpoint inhibitor therapy. ACS Chem. Biol. 2023, 18, 1368–1377. DOI: 10.1021/acschembio.3c00085 PMID: 37172210
Tsukidate, T.; Li, Q.; Hang, H. C. Nuclear receptor chemical reporter enables domain-specific analysis of ligands in mammalian cells. ACS Chem. Biol. 2020, 15, 2324–2330. DOI: 10.1021/acschembio.0c00432 PMID: 32909738
Tsukidate, T.; Li, Q.; Hang, H. C. Targeted and proteome-wide analysis of metabolite-protein interactions. Curr. Opin. Chem. Biol. 2019, 54, 19–27. DOI: 10.1016/j.cbpa.2019.10.008 PMID: 31790852
Vandana, J. Jeya Chong, A. C. N.; Vandana, J. J.; Jeng, G.; Li, G.; Meng, Z.; Duan, X.; Zhang, T.; Qiu, Y.; Duran-Struuck, R.; Coker, K.; Wang, W.; Li, Y.; Min, Z.; Zuo, X.; de Silva, N.; Chen, Z.; Naji, A.; Hao, M.; Liu, C.; Chen, S. Checkpoint kinase 2 controls insulin secretion and glucose homeostasis. Nat. Chem. Biol. 2024, 20, 566–576. DOI: 10.1038/s41589-023-01466-4 PMID: 37945898
Xue, D.; Narisu, N.; Taylor, D. L.; Zhang, M.; Grenko, C.; Taylor, H. J.; Yan, T.; Tang, X.; Sinha, N.; Zhu, J.; Vandana, J. J.; Nok Chong, A. C.; Lee, A.; Mansell, E. C.; Swift, A. J.; Erdos, M. R.; Zhong, A.; Bonnycastle, L. L.; Zhou, T.; Chen, S.; Collins, F. S. Functional interrogation of twenty type 2 diabetes-associated genes using isogenic human embryonic stem cell-derived β-like cells. Cell Metab. 2023, 35, 1897-1914.e11. DOI: 10.1016/j.cmet.2023.09.013 PMID: 37858332
Chua, G. N. L.*; Vandana, J. J.*; Hsieh, C. C.* Students’ perspective on scientific training. ChemBioChem 2023, 24, e202300054. DOI: 10.1002/cbic.202300054 PMID: 37098995
Vandana, J. J.; Manrique, C.; Lacko, L. A.; Chen, S. Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation. Cell Stem Cell 2023, 30, 571–591. DOI: 10.1016/j.stem.2023.04.011 PMID: 37146581
Vandana, J. J.; Lacko, L. A.; Chen, S. Expanding the precision oncology toolkit with micro-organospheres for early cancer diagnosis. Cell Stem Cell 2022, 29, 873–875. DOI: 10.1016/j.stem.2022.05.002 PMID: 35659872
Tang, X.; Uhl, S.; Zhang, T.; Xue, D.; Li, B.; Vandana, J. J.; Acklin, J. A.; Bonnycastle, L. L.; Narisu, N.; Erdos, M. R.; Bram, Y.; Chandar, V.; Chong, A. C. N.; Lacko, L. A.; Min, Z.; Lim, J. K.; Borczuk, A. C.; Xiang, J.; Naji, A.; Collins, F. S.; Evans, T.; Liu, C.; tenOever, B. R.; Schwartz, R. E.; Chen, S. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab. 2021, 33, 1577-1591. DOI: 10.1016/j.cmet.2021.05.015 PMID: 34081913
Vandana, J. J.; Lacko, L. A.; Chen, S. Phenotypic technologies in stem cell biology. Cell Chem. Biol. 2021, 28, 257–270. DOI: 10.1016/j.chembiol.2021.02.001 PMID: 33651977
Zhang, M.†; Vandana, J. J.†; Lacko, L.; Chen, S. Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Res. 2020, 49, 102063. DOI: 10.1016/j.scr.2020.102063 PMID: 33137568
VarnBuhler, Bria VarnBuhler, B. S.; Moon, J.; Dey, S. K.; Wu, J.; Jaffrey, S. R. Detection of SARS-CoV-2 RNA using a DNA aptamer mimic of green fluorescent protein. ACS Chem. Biol. 2022, 17, 840–853. DOI: 10.1021/acschembio.1c00893 PMID: 35341244
Vos, Cheryl Onwueme, K. C.; Vos, C. J.; Zurita, J.; Ferreras, J. A.; Quadri, L. E. The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog. Lipid Res. 2005, 44, 259–302. DOI: 10.1016/j.plipres.2005.07.001 PMID: 16115688
Onwueme, K. C.; Vos, C. J.; Zurita, J.; Soll, C. E.; Quadri, L. E. Identification of phthiodiolone ketoreductase, an enzyme required for production of mycobacterial diacyl phthiocerol virulence factors. J. Bacteriol. 2005, 187, 4760–4766. DOI: 10.1128/JB.187.14.4760-4766.2005 PMID: 15995190
Vogt, Kristen Chen, C.; Wu, Y.; Wang, S. T.; Berisha, N.; Manzari, M. T.; Vogt, K.; Gang, O.; Heller, D. A. Fragment-based drug nanoaggregation reveals drivers of self-assembly. Nat. Commun. 2023, 14, 8340. DOI: 10.1038/s41467-023-43560-0 PMID: 38097573
Bourne, C. M.; Wallisch, P.; Dacek, M. M.; Gardner, T. J.; Pierre, S.; Vogt, K.; Corless, B. C.; Bah, M. A.; Romero-Pichardo, J. E.; Charles, A.; Kurtz, K. G.; Tan, D. S.; Scheinberg, D. A. Host interactions with engineered T-cell micropharmacies. Cancer Immunol. Res. 2023, 11, 1253–1265. DOI: 10.1158/2326-6066.CIR-22-0879 PMID: 37379366
Dacek, M. M.; Kurtz, K. G.; Wallisch, P.; Pierre, S. A.; Khayat, S.; Bourne, C. M.; Gardner, T. J.; Vogt, K. C.; Aquino, N.; Younes, A.; Scheinberg, D. A. Potentiating antibody-dependent killing of cancers with CAR T cells secreting CD47-SIRPα checkpoint blocker. Blood 2023, 141, 2003–2015. DOI: 10.1182/blood.2022016101 PMID: 36696633
Gardner, T. J.; Bourne, C. M.; Dacek, M. M.; Kurtz, K.; Malviya, M.; Peraro, L.; Silberman, P. C.; Vogt, K. C.; Unti, M. J.; Brentjens, R.; Scheinberg, D. Targeted cellular micropharmacies: Cells engineered for localized drug delivery. Cancers (Basel) 2020, 12, E2175. DOI: 10.3390/cancers12082175 PMID: 32764348
Vostal, Lauren Chua, G. N. L.; Watters, J. W.; Olinares, P. D. B.; Begum, M.; Vostal, L. E.; Luo, J. A.; Chait, B. T.; Liu, S. Differential dynamics specify MeCP2 function at nucleosomes and methylated DNA. Nat. Struct. Mol. Biol. 2024, 31, 1789–1797. DOI: 10.1038/s41594-024-01373-9 PMID: 39164525
Jones, N. H.; Liu, Q.; Urnavicius, L.; Dahan, N. E.; Vostal, L. E.; Kapoor, T. M. Allosteric activation of VCP, an AAA unfoldase, by small molecule mimicry. Proc. Natl. Acad. Sci. U.S.A. 2024, 121, e2316892121. DOI: 10.1073/pnas.2316892121 PMID: 38833472
Ramsey, J. R.; Shelton, P. M. M.; Heiss, T. K.; Olinares, P. D. B.; Vostal, L. E.; Soileau, H.; Grasso, M.; Casebeer, S. W.; Adaniya, S.; Miller, M.; Sun, S.; Huggins, D. J.; Myers, R. W.; Chait, B. T.; Vinogradova, E. V.; Kapoor, T. M. Using a function-first “scout fragment”-based approach to develop allosteric covalent inhibitors of conformationally dynamic helicase mechanoenzymes. J. Am. Chem. Soc. 2024, 146, 62–67. DOI: 10.1021/jacs.3c10581 PMID: 38134034
Vostal, L. E.; Kapoor, T. M. Fine-tuning chemical genetics to identify physiologic drug targets. Cell Chem. Biol. 2023, 30, 1331–1333. DOI: 10.1016/j.chembiol.2023.10.017 PMID: 37977127
Ball, D. P.; Taabazuing, C. Y.; Griswold, A. R.; Orth, E. L.; Rao, S. D.; Kotliar, I. B.; Vostal, L. E.; Johnson, D. C.; Bachovchin, D. A. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci. Alliance 2020, 3, e202000664. DOI: 10.26508/lsa.202000664 PMID: 32051255
Warner, Evelyn Váradi, A.; Marrone, G. F.; Palmer, T. C.; Narayan, A.; Szabó, M. R.; Le Rouzic, V.; Grinnell, S. G.; Subrath, J. J.; Warner, E.; Kalra, S.; Hunkele, A.; Pagirsky, J.; Eans, S. O.; Medina, J. M.; Xu, J.; Pan, Y. X.; Borics, A.; Pasternak, G. W.; McLaughlin, J. P.; Majumdar, S. Mitragynine/corynantheidine pseudoindoxyls as opioid analgesics with mu agonism and delta antagonism, which do not recruit β-arrestin-2. J. Med. Chem. 2016, 59, 8381–8397. DOI: 10.1021/acs.jmedchem.6b00748 PMID: 27556704
Warren, Charles Scott, K. A.; Kojima, H.; Ropek, N.; Warren, C. D.; Zhang, T. L.; Hogg, S. J.; Sanford, H.; Webster, C.; Zhang, X.; Rahman, J.; Melillo, B.; Cravatt, B. F.; Lyu, J.; Abdel-Wahab, O.; Vinogradova, E. V. Covalent targeting of splicing in T cells. Cell Chem. Biol. 2024, in press. DOI: 10.1016/j.chembiol.2024.10.010 PMID: 39591969
Ball, D. P.; Tsamouri, L. P.; Wang, A. E.; Huang, H. C.; Warren, C. D.; Wang, Q.; Edmondson, I. H.; Griswold, A. R.; Rao, S. D.; Johnson, D. C.; Bachovchin, D. A. Oxidized thioredoxin-1 restrains the NLRP1 inflammasome. Sci. Immunol. 2022, 7, eabm7200. DOI: 10.1126/sciimmunol.abm7200 PMID: 36332009
Wiewiora, Rafal Zimmerman, M. I.; Porter, J. R.; Ward, M. D.; Singh, S.; Vithani, N.; Meller, A.; Mallimadugula, U. L.; Kuhn, C. E.; Borowsky, J. H.; Wiewiora, R. P.; Hurley, M. F. D.; Harbison, A. M.; Fogarty, C. A.; Coffland, J. E.; Fadda, E.; Voelz, V. A.; Chodera, J. D.; Bowman, G. R. SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome. Nat. Chem. 2021, 13, 651–659. DOI: 10.1038/s41557-021-00707-0 PMID: 34031561
Suárez, E.†; Wiewiora, R. P.†; Wehmeyer, C.; Noé, F.; Chodera, J. D.; Zuckerman, D. M. What Markov state models can and cannot do: Correlation versus path-based observables in protein-folding models. J. Chem. Theory Comput. 2021, 17, 3119–3133. DOI: 10.1021/acs.jctc.0c01154 PMID: 33904312
Garst, E. H.; Lee, H.; Das, T.; Bhattacharya, S.; Percher, A.; Wiewiora, R.; Witte, I. P.; Li, Y.; Peng, T.; Im, W.; Hang, H. C. Site-specific lipidation enhances IFITM3 membrane interactions and antiviral activity. ACS Chem. Biol. 2021, 16, 844–856. DOI: 10.1021/acschembio.1c00013 PMID: 33887136
Gkeka, P.; Stoltz, G.; Barati Farimani, A.; Belkacemi, Z.; Ceriotti, M.; Chodera, J. D.; Dinner, A. R.; Ferguson, A. L.; Maillet, J. B.; Minoux, H.; Peter, C.; Pietrucci, F.; Silveira, A.; Tkatchenko, A.; Trstanova, Z.; Wiewiora, R.; Lelievre, T. Machine learning force fields and coarse-grained variables in molecular dynamics: Application to materials and biological systems. J. Chem. Theory Comput. 2020, 16, 4757–4775. DOI: 10.1021/acs.jctc.0c00355 PMID: 32559068
Sang, D.; Pinglay, S.; Wiewiora, R. P.; Selvan, M. E.; Lou, H. J.; Chodera, J. D.; Turk, B. E.; Gümüş, Z. H.; Holt, L. J. Ancestral reconstruction reveals mechanisms of ERK regulatory evolution. eLife 2019, 8, e38805. DOI: 10.7554/eLife.38805 PMID: 31407663
Chen, S.; Wiewiora, R. P.; Meng, F.; Babault, N.; Ma, A.; Yu, W.; Qian, K.; Hu, H.; Zou, H.; Wang, J.; Fan, S.; Blum, G.; Pittella-Silva, F.; Beauchamp, K. A.; Tempel, W.; Jiang, H.; Chen, K.; Skene, R. J.; Zheng, Y. G.; Brown, P. J.; Jin, J.; Luo, C.; Chodera, J. D.; Luo, M. The dynamic conformational landscape of the protein methyltransferase SETD8. eLife 2019, 8, e45403. DOI: 10.7554/eLife.45403 PMID: 31081496
Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao, Y.; Beauchamp, K. A.; Wang, L. P.; Simmonett, A. C.; Harrigan, M. P.; Stern, C. D.; Wiewiora, R. P.; Brooks, B. R.; Pande, V. S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017, 13, e1005659. DOI: 10.1371/journal.pcbi.1005659 PMID: 28746339
Wollowitz, Jaina Kim, M.†; Chen, C.†; Yaari, Z.; Frederiksen, R.; Randall, E.; Wollowitz, J.; Cupo, C.; Wu, X.; Shah, J.; Worroll, D.; Lagenbacher, R. E.; Goerzen, D.; Li, Y. M.; An, H.; Wang, Y.; Heller, D. A. Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo. Nat. Chem. Biol. 2023, 19, 1448–1457. DOI: 10.1038/s41589-023-01364-9 PMID: 37322156
Mattheisen, J. M.; Wollowitz, J. S.; Huber, T.; Sakmar, T. P. Genetic code expansion to enable site-specific bioorthogonal labeling of functional G protein-coupled receptors in live cells. Protein Sci. 2023, 32, e4550. DOI: 10.1002/pro.4550 PMID: 36540928
Won, Annie Adams, M. M.; Damani, P.; Perl, N. R.; Won, A.; Hong, F.; Livingston, P. O.; Ragupathi, G.; Gin, D. Y. Design and synthesis of potent Quillaja saponin vaccine adjuvants. J. Am. Chem. Soc. 2010, 132, 1939–1945. DOI: 10.1021/ja9082842 PMID: 20088518
Gómez-Nuñez, M.; Haro, K. J.; Dao, T.; Chau, D.; Won, A.; Escobar-Alvarez, S.; Zakhaleva, V.; Korontsvit, T.; Gin, D. Y.; Scheinberg, D. A. Non-natural and photo-reactive amino acids as biochemical probes of immune function. PLoS ONE 2008, 3, e3938. DOI: 10.1371/journal.pone.0003938 PMID: 19079589
Wu, You Mekala, S.†; Wu, Y.†; Li, Y. M. Strategies of positron emission tomography (PET) tracer development for imaging of tau and α-synuclein in neurodegenerative disorders. RSC Med. Chem. 2024, in press. DOI: 10.1039/d4md00576g PMID: 39678127
Chen, C.; Wu, Y.; Wang, S. T.; Berisha, N.; Manzari, M. T.; Vogt, K.; Gang, O.; Heller, D. A. Fragment-based drug nanoaggregation reveals drivers of self-assembly. Nat. Commun. 2023, 14, 8340. DOI: 10.1038/s41467-023-43560-0 PMID: 38097573
Wurst, Jacqueline Sharma, I.; Wurst, J. M.; Tan, D. S. Solvent-dependent divergent functions of Sc(OTf)₃ in stereoselective epoxide-opening spiroketalizations. Org. Lett. 2014, 16, 2474–2477. DOI: 10.1021/ol500853q PMID: 24742081
Wurst, J. M.; Verano, A. L.; Tan, D. S. Stereoselective synthesis of acortatarins A and B. Org. Lett. 2012, 14, 4442–4445. DOI: 10.1021/ol3019456 PMID: 22924668
Wurst, J. M.; Liu, G.; Tan, D. S. Hydrogen-bonding catalysis and inhibition by simple solvents in the stereoselective kinetic epoxide-opening spirocyclization of glycal epoxides to form spiroketals. J. Am. Chem. Soc. 2011, 133, 7916–7925. DOI: 10.1021/ja201249c PMID: 21539313
Bauer, R. A.; Wurst, J. M.; Tan, D. S. Expanding the range of ‘druggable’ targets with natural product-based libraries: an academic perspective. Curr. Opin. Chem. Biol. 2010, 14, 308–314. DOI: 10.1016/j.cbpa.2010.02.001 PMID: 20202892
Liu, G.; Wurst, J. M.; Tan, D. S. Stereoselective synthesis of benzannulated spiroketals: influence of the aromatic ring on reactivity and conformation. Org. Lett. 2009, 11, 3670–3673. DOI: 10.1021/ol901437f PMID: 19634891
Xiao, Yang Knörlein, A.†; Xiao, Y.†; David, Y. Leveraging histone glycation for cancer diagnostics and therapeutics. Trends Cancer 2023, 9, 410–420. DOI: 10.1016/j.trecan.2023.01.005 PMID: 36804508
Yardeny, Noah Wang, Q.; Hsiao, J. C.; Yardeny, N.; Huang, H. C.; O’Mara, C. M.; Orth-He, E. L.; Ball, D. P.; Zhang, Z.; Bachovchin, D. A. The NLRP1 and CARD8 inflammasomes detect reductive stress. Cell Rep. 2023, 42, 111966. DOI: 10.1016/j.celrep.2022.111966 PMID: 36649710
Ye, Linzhi Baca, C. F.†; Majumder, P.†; Hickling, J. H.; Ye, L.; Teplova, M.; Brady, S. F.; Patel, D. J.; Marraffini, L. A. The CRISPR-associated adenosine deaminase Cad1 converts ATP to ITP to provide antiviral immunity. Cell 2024, 187, 7183–7195. DOI: 10.1016/j.cell.2024.10.002 PMID: 39471810
Yi, Lina Yi, L.; Bozkurt, G.; Li, Q.; Lo, S.; Menon, A. K.; Wu, H. Disulfide bond formation and N-glycosylation modulate protein-protein interactions in GPI-transamidase (GPIT). Sci Rep 2017, 8, 45912. DOI: 10.1038/srep45912 PMID: 28374821
Lee, J. H.; Yi, L.; Li, J.; Schweitzer, K.; Borgmann, M.; Naumann, M.; Wu, H. Crystal structure and versatile functional roles of the COP9 signalosome subunit 1. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 11845–11850. DOI: 10.1073/pnas.1302418110 PMID: 23818606
Yin, Qian Yin, Q.; Tian, Y.; Kabaleeswaran, V.; Jiang, X.; Tu, D.; Eck, M. J.; Chen, Z. J.; Wu, H. Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol. Cell 2012, 46, 735–745. DOI: 10.1016/j.molcel.2012.05.029 PMID: 22705373
Tian, Y.; Simanshu, D. K.; Ascano, M.; Diaz-Avalos, R.; Park, A. Y.; Juranek, S. A.; Rice, W. J.; Yin, Q.; Robinson, C. V.; Tuschl, T.; Patel, D. J. Multimeric assembly and biochemical characterization of the Trax-translin endonuclease complex. Nat. Struct. Mol. Biol. 2011, 18, 658–664. DOI: 10.1038/nsmb.2069 PMID: 21552261
Wu, H.; Lo, Y. C.; Yin, Q. Structural studies of NEMO and TRAF6: implications in NF-κB activation. Adv. Exp. Med. Biol. 2010, 691, 89–91. DOI: 10.1007/978-1-4419-6612-4_9 PMID: 21153312
Zheng, C.; Yin, Q.; Wu, H. Structural studies of NF-κB signaling. Cell Res. 2011, 21, 183–195. DOI: 10.1038/cr.2010.171 PMID: 21135870
Wang, L.; Yang, J. K.; Kabaleeswaran, V.; Rice, A. J.; Cruz, A. C.; Park, A. Y.; Yin, Q.; Damko, E.; Jang, S. B.; Raunser, S.; Robinson, C. V.; Siegel, R. M.; Walz, T.; Wu, H. The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat. Struct. Mol. Biol. 2010, 17, 1324–1329. DOI: 10.1038/nsmb.1920 PMID: 20935634
Yin, Q.; Lamothe, B.; Darnay, B. G.; Wu, H. Structural basis for the lack of E2 interaction in the RING domain of TRAF2. Biochemistry 2009, 48, 10558–10567. DOI: 10.1021/bi901462e PMID: 19810754
Yin, Q.; Lin, S. C.; Lamothe, B.; Lu, M.; Lo, Y. C.; Hura, G.; Zheng, L.; Rich, R. L.; Campos, A. D.; Myszka, D. G.; Lenardo, M. J.; Darnay, B. G.; Wu, H. E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol. 2009, 16, 658–666. DOI: 10.1038/nsmb.1605 PMID: 19465916
Pan, W.; da Graca, L. S.; Shao, Y.; Yin, Q.; Wu, H.; Jiang, X. PHAPI/pp32 suppresses tumorigenesis by stimulating apoptosis. J. Biol. Chem. 2009, 284, 6946–6954. DOI: 10.1074/jbc.M805801200 PMID: 19121999
Gao, Z.; Tian, Y.; Wang, J.; Yin, Q.; Wu, H.; Li, Y. M.; Jiang, X. A dimeric Smac/diablo peptide directly relieves caspase-3 inhibition by XIAP. Dynamic and cooperative regulation of XIAP by Smac/Diablo. J. Biol. Chem. 2007, 282, 30718–30727. DOI: 10.1074/jbc.M705258200 PMID: 17724022
Chung, J. Y.; Lu, M.; Yin, Q.; Lin, S. C.; Wu, H. Molecular basis for the unique specificity of TRAF6. Adv. Exp. Med. Biol. 2007, 597, 122–130. DOI: 10.1007/978-0-387-70630-6_10 PMID: 17633022
Chung, J. Y.; Lu, M.; Yin, Q.; Wu, H. Structural revelations of TRAF2 function in TNF receptor signaling pathway. Adv. Exp. Med. Biol. 2007, 597, 93–113. DOI: 10.1007/978-0-387-70630-6_8 PMID: 17633020
Yin, Q.; Park, H. H.; Chung, J. Y.; Lin, S. C.; Lo, Y. C.; da Graca, L. S.; Jiang, X.; Wu, H. Caspase-9 holoenzyme is a specific and optimal procaspase-3 processing machine. Mol. Cell 2006, 22, 259–268. DOI: 10.1016/j.molcel.2006.03.030 PMID: 16630893
Yuan, Xiaoqiu Wu, X.; Spence, J. S.; Das, T.; Yuan, X.; Chen, C.; Zhang, Y.; Li, Y.; Sun, Y.; Chandran, K.; Hang, H. C.; Peng, T. Site-specific photo-crosslinking proteomics reveal regulation of IFITM3 trafficking and turnover by VCP/p97 ATPase. Cell Chem. Biol. 2020, 27, 571-585.e6. DOI: 10.1016/j.chembiol.2020.03.004 PMID: 32243810
Percher, A.; Ramakrishnan, S.; Thinon, E.; Yuan, X.; Yount, J. S.; Hang, H. C. Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 4302–4307. DOI: 10.1073/pnas.1602244113 PMID: 27044110
Peng, T.; Yuan, X.; Hang, H. C. Turning the spotlight on protein-lipid interactions in cells. Curr. Opin. Chem. Biol. 2014, 21, 144–153. DOI: 10.1016/j.cbpa.2014.07.015 PMID: 25129056
Zhang, Tiffany Scott, K. A.; Kojima, H.; Ropek, N.; Warren, C. D.; Zhang, T. L.; Hogg, S. J.; Sanford, H.; Webster, C.; Zhang, X.; Rahman, J.; Melillo, B.; Cravatt, B. F.; Lyu, J.; Abdel-Wahab, O.; Vinogradova, E. V. Covalent targeting of splicing in T cells. Cell Chem. Biol. 2024, in press. DOI: 10.1016/j.chembiol.2024.10.010 PMID: 39591969
Scott, K. A.†; Zhang, T. L.†; Xi, S. Y.†; Ngo, B.; Vinogradova, E. V. Protein state-dependent chemical biology. Isr. J. Chem 2023, 63, e202200101. DOI: 10.1002/ijch.202200101 PMID: n/a
Zhang, Yuxi Zhang, Y.; Tao, X.; MacKinnon, R. Correlation between structure and function in phosphatidylinositol lipid-dependent Kir2.2 gating. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2114046119. DOI: 10.1073/pnas.2114046119 PMID: 35286194
Zheng, Qinsi Zheng, Q.; Jockusch, S.; Zhou, Z.; Altman, R. B.; Zhao, H.; Asher, W.; Holsey, M.; Mathiasen, S.; Geggier, P.; Javitch, J. A.; Blanchard, S. C. Electronic tuning of self-healing fluorophores for live-cell and single-molecule imaging. Chem Sci 2017, 8, 755–762. DOI: 10.1039/C6SC02976K PMID: 28377799
Zheng, Q.; Jockusch, S.; Rodríguez-Calero, G. G.; Zhou, Z.; Zhao, H.; Altman, R. B.; Abruña, H. D.; Blanchard, S. C. Intra-molecular triplet energy transfer is a general approach to improve organic fluorophore photostability. Photochem. Photobiol. Sci. 2016, 15, 196–203. DOI: 10.1039/c5pp00400d PMID: 26700693
Juette, M. F.; Terry, D. S.; Wasserman, M. R.; Zhou, Z.; Altman, R. B.; Zheng, Q.; Blanchard, S. C. The bright future of single-molecule fluorescence imaging. Curr. Opin. Chem. Biol. 2014, 20, 103–111. DOI: 10.1016/j.cbpa.2014.05.010 PMID: 24956235
Zheng, Q.; Jockusch, S.; Zhou, Z.; Blanchard, S. C. The contribution of reactive oxygen species to the photobleaching of organic fluorophores. Photochem. Photobiol. 2014, 90, 448–454. DOI: 10.1111/php.12204 PMID: 24188468
Zheng, Q.; Juette, M. F.; Jockusch, S.; Wasserman, M. R.; Zhou, Z.; Altman, R. B.; Blanchard, S. C. Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev. 2014, 43, 1044–1056. DOI: 10.1039/c3cs60237k PMID: 24177677
Zheng, Q. and Blanchard, S.C. Single Fluorophore Photobleaching. In Encyclopedia of Biophysics, Roberts, G., Ed. Springer: Berlin, 2013; pp. 2324–2326. WWW: link
Zheng, Q. and Blanchard, S.C. Single Fluorophore Blinking. In Encyclopedia of Biophysics, Roberts, G., Ed. Springer: Berlin, 2013; pp. 2322–2323. WWW: link
Zheng, Q.; Jockusch, S.; Zhou, Z.; Altman, R. B.; Warren, J. D.; Turro, N. J.; Blanchard, S. C. On the mechanisms of cyanine fluorophore photostabilization. J. Phys. Chem. Lett. 2012, 3, 2200–2203. DOI: 10.1021/jz300670p PMID: 22984636
Altman, R. B.; Zheng, Q.; Zhou, Z.; Terry, D. S.; Warren, J. D.; Blanchard, S. C. Enhanced photostability of cyanine fluorophores across the visible spectrum. Nat. Methods 2012, 9, 428–429. DOI: 10.1038/nmeth.1988 PMID: 22543373
Altman, R. B.; Terry, D. S.; Zhou, Z.; Zheng, Q.; Geggier, P.; Kolster, R. A.; Zhao, Y.; Javitch, J. A.; Warren, J. D.; Blanchard, S. C. Cyanine fluorophore derivatives with enhanced photostability. Nat. Methods 2011, 9, 68–71. DOI: 10.1038/nmeth.1774 PMID: 22081126
Wu, X.; Shen, Q. T.; Oristian, D. S.; Lu, C. P.; Zheng, Q.; Wang, H. W.; Fuchs, E. Skin stem cells orchestrate directional migration by regulating microtubule-ACF7 connections through GSK3β. Cell 2011, 144, 341–352. DOI: 10.1016/j.cell.2010.12.033 PMID: 21295697
Zinder, John Das, M.; Zattas, D.; Zinder, J. C.; Wasmuth, E. V.; Henri, J.; Lima, C. D. Substrate discrimination and quality control require each catalytic activity of TRAMP and the nuclear RNA exosome. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2024846118. DOI: 10.1073/pnas.2024846118 PMID: 33782132
Zinder, J. C.; Lima, C. D. Reconstitution of S. cerevisiae RNA exosome complexes using recombinantly expressed proteins. Methods Mol. Biol. 2020, 2062, 427–448. DOI: 10.1007/978-1-4939-9822-7_21 PMID: 31768989
Weick, E. M.; Zinder, J. C.; Lima, C. D. Strategies for generating RNA exosome complexes from recombinant expression hosts. Methods Mol. Biol. 2020, 2062, 417–425. DOI: 10.1007/978-1-4939-9822-7_20 PMID: 31768988
Weick, E. M.; Puno, M. R.; Januszyk, K.; Zinder, J. C.; DiMattia, M. A.; Lima, C. D. Helicase-dependent RNA decay illuminated by a cryo-EM structure of a human nuclear RNA exosome-MTR4 complex. Cell 2018, 173, 1663–1677. DOI: 10.1016/j.cell.2018.05.041 PMID: 29906447
Wasmuth, E. V.; Zinder, J. C.; Zattas, D.; Das, M.; Lima, C. D. Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase. eLife 2017, 6, e29062. DOI: 10.7554/eLife.29062 PMID: 28742025
Zinder, J. C.; Lima, C. D. Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev. 2017, 31, 88–100. DOI: 10.1101/gad.294769.116 PMID: 28202538
Zinder, J. C.; Wasmuth, E. V.; Lima, C. D. Nuclear RNA exosome at 3.1 Å reveals substrate specificities, RNA paths, and allosteric inhibition of Rrp44/Dis3. Mol. Cell 2016, 64, 734–745. DOI: 10.1016/j.molcel.2016.09.038 PMID: 27818140
Wasserman, M. R.; Pulk, A.; Zhou, Z.; Altman, R. B.; Zinder, J. C.; Green, K. D.; Garneau-Tsodikova, S.; Doudna Cate, J. H.; Blanchard, S. C. Chemically related 4,5-linked aminoglycoside antibiotics drive subunit rotation in opposite directions. Nat. Commun. 2015, 6, 7896. DOI: 10.1038/ncomms8896 PMID: 26224058
Zoltowski, Brian Levy, C.; Zoltowski, B. D.; Jones, A. R.; Vaidya, A. T.; Top, D.; Widom, J.; Young, M. W.; Scrutton, N. S.; Crane, B. R.; Leys, D. Updated structure of Drosophila cryptochrome. Nature 2013, 495, E3–E4. DOI: 10.1038/nature11995 PMID: 23518567
Zoltowski, B. D.; Vaidya, A. T.; Top, D.; Widom, J.; Young, M. W.; Crane, B. R. Structure of full-length Drosophila cryptochrome. Nature 2011, 480, 396–399. DOI: 10.1038/nature10618 PMID: 22080955
Zoltowski, B. D.; Vaccaro, B.; Crane, B. R. Mechanism-based tuning of a LOV domain photoreceptor. Nat. Chem. Biol. 2009, 5, 827–834. DOI: 10.1038/nchembio.210 PMID: 19718042
Lamb, J. S.; Zoltowski, B. D.; Pabit, S. A.; Li, L.; Crane, B. R.; Pollack, L. Illuminating solution responses of a LOV domain protein with photocoupled small-angle X-ray scattering. J. Mol. Biol. 2009, 393, 909–919. DOI: 10.1016/j.jmb.2009.08.045 PMID: 19712683
Lamb, J. S.; Zoltowski, B. D.; Pabit, S. A.; Crane, B. R.; Pollack, L. Time-resolved dimerization of a PAS-LOV protein measured with photocoupled small angle X-ray scattering. J. Am. Chem. Soc. 2008, 130, 12226–12227. DOI: 10.1021/ja804236f PMID: 18715002
Zoltowski, B. D.; Crane, B. R. Light activation of the LOV protein vivid generates a rapidly exchanging dimer. Biochemistry 2008, 47, 7012–7019. DOI: 10.1021/bi8007017 PMID: 18553928
Zoltowski, B. D.; Schwerdtfeger, C.; Widom, J.; Loros, J. J.; Bilwes, A. M.; Dunlap, J. C.; Crane, B. R. Conformational switching in the fungal light sensor Vivid. Science 2007, 316, 1054–1057. DOI: 10.1126/science.1137128 PMID: 17510367

†Denotes co-first authors; *Denotes corresponding author.