Publications
Student publications at the forefront of chemical biology
TPCB students have an exceptional publication record, averaging over 5 papers per PhD graduate! This prolific group has published over 550 scientific papers since 2003, in high impact journals including Nature, Science, Cell, Journal of the American Chemical Society, ACS Chemical Biology, Biochemistry, Cell Chemical Biology, Nature Chemical Biology, and Proceedings of the National Academy of Sciences. Because of our highly interactive research environment, many of these papers involve multidisciplinary collaborations between TPCB laboratories as well as with other researchers on the Tri-Institutional campuses. In total, TPCB labs have published over 200 papers together!
Name | Publications |
---|---|
Banerjee, Anoosha | Small, G. I.; Fedorova, O.; Olinares, P. D. B.; Chandanani, J.; Banerjee, A.; Choi, Y. J.; Molina, H.; Chait, B. T.; Darst, S. A.; Campbell, E. A. Structural and functional insights into the enzymatic plasticity of the SARS-CoV-2 NiRAN domain. Mol. Cell 2023, 83, 3921-3930.e7. DOI: 10.1016/j.molcel.2023.10.001 PMID: 37890482 |
Grimes, S. L.; Choi, Y. J.; Banerjee, A.; Small, G.; Anderson-Daniels, J.; Gribble, J.; Pruijssers, A. J.; Agostini, M. L.; Abu-Shmais, A.; Lu, X.; Darst, S. A.; Campbell, E.; Denison, M. R. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. mBio 2023, 14, e0106023. DOI: 10.1128/mbio.01060-23 PMID: 37338298 | |
Banerjee, Sourabh | Menon, I.; Huber, T.; Sanyal, S.; Banerjee, S.; Barré, P.; Canis, S.; Warren, J. D.; Hwa, J.; Sakmar, T. P.; Menon, A. K. Opsin is a phospholipid flippase. Curr. Biol. 2011, 21, 149–153. DOI: 10.1016/j.cub.2010.12.031 PMID: 21236677 |
Knepp, A. M.; Grunbeck, A.; Banerjee, S.; Sakmar, T. P.; Huber, T. Direct measurement of thermal stability of expressed CCR5 and stabilization by small molecule ligands. Biochemistry 2011, 50, 502–511. DOI: 10.1021/bi101059w PMID: 21155586 | |
Zaitseva, E.; Saavedra, M.; Banerjee, S.; Sakmar, T. P.; Vogel, R. SEIRA spectroscopy on a membrane receptor monolayer using lipoprotein particles as carriers. Biophys. J. 2010, 99, 2327–2335. DOI: 10.1016/j.bpj.2010.06.054 PMID: 20923668 | |
Banerjee, S.; Huber, T.; Sakmar, T. P. Rapid incorporation of functional rhodopsin into nanoscale apolipoprotein bound bilayer (NABB) particles. J. Mol. Biol. 2008, 377, 1067–1081. DOI: 10.1016/j.jmb.2008.01.066 PMID: 18313692 | |
Baca, Christian | Hossain, A. A.; Pigli, Y. Z.; Baca, C. F.; Heissel, S.; Thomas, A.; Libis, V. K.; Burian, J.; Chappie, J. S.; Brady, S. F.; Rice, P. A.; Marraffini, L. A. DNA glycosylases provide antiviral defence in prokaryotes. Nature 2024, 629, 410–416. DOI: 10.1038/s41586-024-07329-9 PMID: 38632404 |
Baca, C. F.; Yu, Y.; Rostøl, J. T.; Majumder, P.; Patel, D. J.; Marraffini, L. A. The CRISPR effector Cam1 mediates membrane depolarization for phage defence. Nature 2024, 625, 797–804. DOI: 10.1038/s41586-023-06902-y PMID: 38200316 | |
Banik, Jacob | Charlop-Powers, Z.; Banik, J. J.; Owen, J. G.; Craig, J. W.; Brady, S. F. Selective enrichment of environmental DNA libraries for genes encoding nonribosomal peptides and polyketides by phosphopantetheine transferase-dependent complementation of siderophore biosynthesis. ACS Chem. Biol. 2013, 8, 138–143. DOI: 10.1021/cb3004918 PMID: 23072412 |
Bick, M. J.; Banik, J. J.; Darst, S. A.; Brady, S. F. The 2.7 Å resolution structure of the glycopeptide sulfotransferase Teg14. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 1278–1286. DOI: 10.1107/S0907444910036681 PMID: 21123867 | |
Banik, J. J.; Craig, J. W.; Calle, P. Y.; Brady, S. F. Tailoring enzyme-rich environmental DNA clones: a source of enzymes for generating libraries of unnatural natural products. J. Am. Chem. Soc. 2010, 132, 15661–15670. DOI: 10.1021/ja105825a PMID: 20945895 | |
Banik, J. J.; Brady, S. F. Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr. Opin. Microbiol. 2010, 13, 603–609. DOI: 10.1016/j.mib.2010.08.012 PMID: 20884282 | |
Bick, M. J.; Banik, J. J.; Darst, S. A.; Brady, S. F. Crystal structures of the glycopeptide sulfotransferase Teg12 in a complex with the teicoplanin aglycone. Biochemistry 2010, 49, 4159–4168. DOI: 10.1021/bi100150v PMID: 20361791 | |
Banik, J. J.; Brady, S. F. Cloning and characterization of new glycopeptide gene clusters found in an environmental DNA megalibrary. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 17273–17277. DOI: 10.1073/pnas.0807564105 PMID: 18987322 | |
Bauer, Renato | Wenderski, T. A.; Stratton, C. F.; Bauer, R. A.; Kopp, F.; Tan, D. S. Principal component analysis as a tool for library design: a case study investigating natural products, brand-name drugs, natural product-like libraries, and drug-like libraries. Methods Mol. Biol. 2015, 1263, 225–242. DOI: 10.1007/978-1-4939-2269-7_18 PMID: 25618349 |
Bauer, R. A.; Wenderski, T. A.; Tan, D. S. Biomimetic diversity-oriented synthesis of benzannulated medium rings via ring expansion. Nat. Chem. Biol. 2012, 9, 21–29. DOI: 10.1038/nchembio.1130 PMID: 23160003 | |
Moura-Letts, G.; DiBlasi, C. M.; Bauer, R. A.; Tan, D. S. Solid-phase synthesis and chemical space analysis of a 190-membered alkaloid/terpenoid-like library. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 6745–6750. DOI: 10.1073/pnas.1015268108 PMID: 21451137 | |
Bauer, R. A.; DiBlasi, C. M.; Tan, D. S. The tert-butylsulfinamide lynchpin in transition-metal-mediated multiscaffold library synthesis. Org. Lett. 2010, 12, 2084–2087. DOI: 10.1021/ol100574y PMID: 20356070 | |
Bauer, R. A.; Wurst, J. M.; Tan, D. S. Expanding the range of ‘druggable’ targets with natural product-based libraries: an academic perspective. Curr. Opin. Chem. Biol. 2010, 14, 308–314. DOI: 10.1016/j.cbpa.2010.02.001 PMID: 20202892 | |
Berman, Adi | Kelley, M. E.; Berman, A. Y.; Stirling, D. R.; Cimini, B. A.; Han, Y.; Singh, S.; Carpenter, A. E.; Kapoor, T. M.; Way, G. P. High-content microscopy reveals a morphological signature of bortezomib resistance. eLife 2023, 12, e91362. DOI: 10.7554/eLife.91362 PMID: 37753907 |
Berman, A. Y.; Wieczorek, M.; Aher, A.; Olinares, P. D. B.; Chait, B. T.; Kapoor, T. M. A nucleotide binding-independent role for γ-tubulin in microtubule capping and cell division. J. Cell. Biol. 2023, 222, e202204102. DOI: 10.1083/jcb.202204102 PMID: 36695784 | |
Blum, Gil | Chen, S.†; Wiewiora, R. P.†; Meng, F.; Babault, N.; Ma, A.; Yu, W.; Qian, K.; Hu, H.; Zou, H.; Wang, J.; Fan, S.; Blum, G.; Pittella-Silva, F.; Beauchamp, K. A.; Tempel, W.; Jiang, H.; Chen, K.; Skene, R. J.; Zheng, Y. G.; Brown, P. J.; Jin, J.; Luo, C.; Chodera, J. D.; Luo, M. The dynamic conformational landscape of the protein methyltransferase SETD8. eLife 2019, 8, e45403. DOI: 10.7554/eLife.45403 PMID: 31081496 |
Linscott, J. A.; Kapilashrami, K.; Wang, Z.; Senevirathne, C.; Bothwell, I. R.; Blum, G.; Luo, M. Kinetic isotope effects reveal early transition state of protein lysine methyltransferase SET8. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E8369-E8378. DOI: 10.1073/pnas.1609032114 PMID: 27940912 | |
LaFave, L. M.; Béguelin, W.; Koche, R.; Teater, M.; Spitzer, B.; Chramiec, A.; Papalexi, E.; Keller, M. D.; Hricik, T.; Konstantinoff, K.; Micol, J. B.; Durham, B.; Knutson, S. K.; Campbell, J. E.; Blum, G.; Shi, X.; Doud, E. H.; Krivtsov, A. V.; Chung, Y. R.; Khodos, I.; de Stanchina, E.; Ouerfelli, O.; Adusumilli, P. S.; Thomas, P. M.; Kelleher, N. L.; Luo, M.; Keilhack, H.; Abdel-Wahab, O.; Melnick, A.; Armstrong, S. A.; Levine, R. L. Loss of BAP1 function leads to EZH2-dependent transformation. Nat. Med. 2015, 21, 1344–1349. DOI: 10.1038/nm.3947 PMID: 26437366 | |
Blum, G.; Ibáñez, G.; Rao, X.; Shum, D.; Radu, C.; Djaballah, H.; Rice, J. C.; Luo, M. Small-molecule inhibitors of SETD8 with cellular activity. ACS Chem. Biol. 2014, 9, 2471–2478. DOI: 10.1021/cb500515r PMID: 25137013 | |
Guo, H.; Wang, R.; Zheng, W.; Chen, Y.; Blum, G.; Deng, H.; Luo, M. Profiling substrates of protein arginine N-methyltransferase 3 with S-adenosyl-L-methionine analogues. ACS Chem. Biol. 2014, 9, 476–484. DOI: 10.1021/cb4008259 PMID: 24320160 | |
Islam, K.; Chen, Y.; Wu, H.; Bothwell, I. R.; Blum, G. J.; Zeng, H.; Dong, A.; Zheng, W.; Min, J.; Deng, H.; Luo, M. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 16778–16783. DOI: 10.1073/pnas.1216365110 PMID: 24082136 | |
Blum, G.; Bothwell, I. R.; Islam, K.; Luo, M. Profiling protein methylation with cofactor analog containing terminal alkyne functionality. Curr. Protoc. Chem. Biol. 2013, 5, 67–88. DOI: 10.1002/9780470559277.ch120241 PMID: 23788324 | |
Blum, G.; Islam, K.; Luo, M. Bioorthogonal profiling of protein methylation (BPPM) using an azido analog of S-adenosyl-L-methionine. Curr. Protoc. Chem. Biol. 2013, 5, 45–66. DOI: 10.1002/9780470559277.ch120240 PMID: 23667794 | |
Wang, R.; Islam, K.; Liu, Y.; Zheng, W.; Tang, H.; Lailler, N.; Blum, G.; Deng, H.; Luo, M. Profiling genome-wide chromatin methylation with engineered posttranslation apparatus within living cells. J. Am. Chem. Soc. 2013, 135, 1048–1056. DOI: 10.1021/ja309412s PMID: 23244065 | |
Zheng, W.; Ibáñez, G.; Wu, H.; Blum, G.; Zeng, H.; Dong, A.; Li, F.; Hajian, T.; Allali-Hassani, A.; Amaya, M. F.; Siarheyeva, A.; Yu, W.; Brown, P. J.; Schapira, M.; Vedadi, M.; Min, J.; Luo, M. Sinefungin derivatives as inhibitors and structure probes of protein lysine methyltransferase SETD2. J. Am. Chem. Soc. 2012, 134, 18004–18014. DOI: 10.1021/ja307060p PMID: 23043551 | |
Bothwell, I. R.; Islam, K.; Chen, Y.; Zheng, W.; Blum, G.; Deng, H.; Luo, M. Se-adenosyl-L-selenomethionine cofactor analogue as a reporter of protein methylation. J. Am. Chem. Soc. 2012, 134, 14905–14912. DOI: 10.1021/ja304782r PMID: 22917021 | |
Ibanez, G.; Shum, D.; Blum, G.; Bhinder, B.; Radu, C.; Antczak, C.; Luo, M.; Djaballah, H. A high throughput scintillation proximity imaging assay for protein methyltransferases. Comb. Chem. High Throughput Screen. 2012, 15, 359–371. DOI: 10.2174/138620712800194468 PMID: 22256970 | |
Wang, R.; Ibáñez, G.; Islam, K.; Zheng, W.; Blum, G.; Sengelaub, C.; Luo, M. Formulating a fluorogenic assay to evaluate S-adenosyl-L-methionine analogues as protein methyltransferase cofactors. Mol. Biosyst. 2011, 7, 2970–2981. DOI: 10.1039/c1mb05230f PMID: 21866297 | |
Bose, Neelanjan | Shinoda, K.; Choe, A.; Hirahara, K.; Kiuchi, M.; Kokubo, K.; Ichikawa, T.; Hoki, J. S.; Suzuki, A. S.; Bose, N.; Appleton, J. A.; Aroian, R. V.; Schroeder, F. C.; Sternberg, P. W.; Nakayama, T. Nematode ascarosides attenuate mammalian type 2 inflammatory responses. Proc Natl Acad Sci U S A 2022, 119, e2108686119. DOI: 10.1073/pnas.2108686119 PMID: 35210367 |
Falcke, J. M.†; Bose, N.†; Artyukhin, A. B.; Rödelsperger, C.; Markov, G. V.; Yim, J. J.; Grimm, D.; Claassen, M. H.; Panda, O.; Baccile, J. A.; Zhang, Y. K.; Le, H. H.; Jolic, D.; Schroeder, F. C.; Sommer, R. J. Linking genomic and metabolomic natural variation uncovers nematode pheromone biosynthesis. Cell Chem. Biol. 2018, 25, 787–796. DOI: 10.1016/j.chembiol.2018.04.004 PMID: 29779955 | |
Liu, Z.; Kariya, M. J.; Chute, C. D.; Pribadi, A. K.; Leinwand, S. G.; Tong, A.; Curran, K. P.; Bose, N.; Schroeder, F. C.; Srinivasan, J.; Chalasani, S. H. Predator-secreted sulfolipids induce defensive responses in C. elegans. Nat. Commun. 2018, 9, 1128. DOI: 10.1038/s41467-018-03333-6 PMID: 29555902 | |
Narayan, A.; Venkatachalam, V.; Durak, O.; Reilly, D. K.; Bose, N.; Schroeder, F. C.; Samuel, A. D.; Srinivasan, J.; Sternberg, P. W. Contrasting responses within a single neuron class enable sex-specific attraction in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E1392–E1401. DOI: 10.1073/pnas.1600786113 PMID: 26903633 | |
Chaudhuri, J.; Bose, N.; Tandonnet, S.; Adams, S.; Zuco, G.; Kache, V.; Parihar, M.; von Reuss, S. H.; Schroeder, F. C.; Pires-daSilva, A. Mating dynamics in a nematode with three sexes and its evolutionary implications. Sci. Rep. 2015, 5, 17676. DOI: 10.1038/srep17676 PMID: 26631423 | |
Yim, J. J.; Bose, N.; Meyer, J. M.; Sommer, R. J.; Schroeder, F. C. Nematode signaling molecules derived from multimodular assembly of primary metabolic building blocks. Org. Lett. 2015, 17, 1648–1651. DOI: 10.1021/acs.orglett.5b00329 PMID: 25782998 | |
Zugasti, O.; Bose, N.; Squiban, B.; Belougne, J.; Kurz, C. L.; Schroeder, F. C.; Pujol, N.; Ewbank, J. J. Activation of a G protein-coupled receptor by its endogenous ligand triggers the innate immune response of Caenorhabditis elegans. Nat. Immunol. 2014, 15, 833–838. DOI: 10.1038/ni.2957 PMID: 25086774 | |
Bose, N.; Meyer, J. M.; Yim, J. J.; Mayer, M. G.; Markov, G. V.; Ogawa, A.; Schroeder, F. C.; Sommer, R. J. Natural variation in dauer pheromone production and sensing supports intraspecific competition in nematodes. Curr. Biol. 2014, 24, 1536–1541. DOI: 10.1016/j.cub.2014.05.045 PMID: 24980503 | |
Mahanti, P.; Bose, N.; Bethke, A.; Judkins, J. C.; Wollam, J.; Dumas, K. J.; Zimmerman, A. M.; Campbell, S. L.; Hu, P. J.; Antebi, A.; Schroeder, F. C. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor, regulating C. elegans development and lifespan. Cell Metab. 2014, 19, 73–83. DOI: 10.1016/j.cmet.2013.11.024 PMID: 24411940 | |
Artyukhin, A. B.; Yim, J. J.; Srinivasan, J.; Izrayelit, Y.; Bose, N.; von Reuss, S. H.; Jo, Y.; Jordan, J. M.; Baugh, L. R.; Cheong, M.; Sternberg, P. W.; Avery, L.; Schroeder, F. C. Succinylated octopamine ascarosides and a new pathway of biogenic amine metabolism in Caenorhabditis elegans. J. Biol. Chem. 2013, 288, 18778–18783. DOI: 10.1074/jbc.C113.477000 PMID: 23689506 | |
Izrayelit, Y.; Robinette, S. L.; Bose, N.; von Reuss, S. H.; Schroeder, F. C. 2D NMR-based metabolomics uncovers interactions between conserved biochemical pathways in the model organism Caenorhabditis elegans. ACS Chem. Biol. 2013, 8, 314–319. DOI: 10.1021/cb3004644 PMID: 23163760 | |
Bose, N.; Ogawa, A.; von Reuss, S. H.; Yim, J. J.; Ragsdale, E. J.; Sommer, R. J.; Schroeder, F. C. Complex small-molecule architectures regulate phenotypic plasticity in a nematode. Angew. Chem. Int. Ed. Engl. 2012, 51, 12438–12443. DOI: 10.1002/anie.201206797 PMID: 23161728 | |
Srinivasan, J.; von Reuss, S. H.; Bose, N.; Zaslaver, A.; Mahanti, P.; Ho, M. C.; O’Doherty, O. G.; Edison, A. S.; Sternberg, P. W.; Schroeder, F. C. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol. 2012, 10, e1001237. DOI: 10.1371/journal.pbio.1001237 PMID: 22253572 | |
von Reuss, S. H.; Bose, N.; Srinivasan, J.; Yim, J. J.; Judkins, J. C.; Sternberg, P. W.; Schroeder, F. C. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J. Am. Chem. Soc. 2012, 134, 1817–1824. DOI: 10.1021/ja210202y PMID: 22239548 | |
Bothwell, Ian | Shu, X.; Dai, Q.; Wu, T.; Bothwell, I. R.; Yue, Y.; Zhang, Z.; Cao, J.; Fei, Q.; Luo, M.; He, C.; Liu, J. N6-Allyladenosine: A new small molecule for RNA labeling identified by mutation assay. J. Am. Chem. Soc. 2017, 139, 17213–17216. DOI: 10.1021/jacs.7b06837 PMID: 29116772 |
Linscott, J. A.; Kapilashrami, K.; Wang, Z.; Senevirathne, C.; Bothwell, I. R.; Blum, G.; Luo, M. Kinetic isotope effects reveal early transition state of protein lysine methyltransferase SET8. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E8369-E8378. DOI: 10.1073/pnas.1609032114 PMID: 27940912 | |
Bothwell, I. R.; Luo, M. Large-scale, protection-free synthesis of Se-adenosyl-L-selenomethionine analogues and their application as cofactor surrogates of methyltransferases. Org. Lett. 2014, 16, 3056–3059. DOI: 10.1021/ol501169y PMID: 24852128 | |
Islam, K.; Chen, Y.; Wu, H.; Bothwell, I. R.; Blum, G. J.; Zeng, H.; Dong, A.; Zheng, W.; Min, J.; Deng, H.; Luo, M. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 16778–16783. DOI: 10.1073/pnas.1216365110 PMID: 24082136 | |
Winter, J. M.; Chiou, G.; Bothwell, I. R.; Xu, W.; Garg, N. K.; Luo, M.; Tang, Y. Expanding the structural diversity of polyketides by exploring the cofactor tolerance of an inline methyltransferase domain. Org. Lett. 2013, 15, 3774–3777. DOI: 10.1021/ol401723h PMID: 23837609 | |
Blum, G.; Bothwell, I. R.; Islam, K.; Luo, M. Profiling protein methylation with cofactor analog containing terminal alkyne functionality. Curr. Protoc. Chem. Biol. 2013, 5, 67–88. DOI: 10.1002/9780470559277.ch120241 PMID: 23788324 | |
Bothwell, I. R.; Islam, K.; Chen, Y.; Zheng, W.; Blum, G.; Deng, H.; Luo, M. Se-adenosyl-L-selenomethionine cofactor analogue as a reporter of protein methylation. J. Am. Chem. Soc. 2012, 134, 14905–14912. DOI: 10.1021/ja304782r PMID: 22917021 | |
Islam, K.; Bothwell, I.; Chen, Y.; Sengelaub, C.; Wang, R.; Deng, H.; Luo, M. Bioorthogonal profiling of protein methylation using azido derivative of S-adenosyl-L-methionine. J. Am. Chem. Soc. 2012, 134, 5909–5915. DOI: 10.1021/ja2118333 PMID: 22404544 | |
Burnside, Chloe | Harper, N. J.†; Burnside, C.†; Klinge, S. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature 2023, 614, 175–181. DOI: 10.1038/s41586-022-05621-0 PMID: 36482135 |
Cahir, Clare | Yang, L.; Han, Y.; Zhou, T.; Lacko, L. A.; Saeed, M.; Tan, C.; Danziger, R.; Zhu, J.; Zhao, Z.; Cahir, C.; Giana, A. M.; Li, Y.; Dong, X.; Moroziewicz, D.; NYSCF Global Stem Cell Array® Team; Paull, D.; Chen, Z.; Zhong, A.; Noggle, S. A.; Rice, C. M.; Qi, Q.; Evans, T.; Chen, S. Isogenic human trophectoderm cells demonstrate the role of NDUFA4 and associated variants in ZIKV infection. iScience 2023, 26, 107001. DOI: 10.1016/j.isci.2023.107001 PMID: 37534130 |
Han, Y.; Tan, L.; Zhou, T.; Yang, L.; Carrau, L.; Lacko, L. A.; Saeed, M.; Jiajun, Z.; Zhao, Z.; Nilsson-Payant, B. E.; Tenorio Lira Neto, F.; Cahir, C.; Giana, A. M.; Chai, J. C.; Li, Y.; Dong, X.; Moroziewicz, D.; NYSCF Global Stem Cell Array Team; Paull, D; Zhang, T.; Koo, S.; Tan, C.; Danziger, R.; Ba, Q.; Feng, L; Chen, Z.; Zhong, A.; Wise, G. J.; Xiang, J. Z.; Wang, H.; Schwartz, R. E.; tenOever, B. R.; Noggle, S. A.; Rice, C. M.; Qi, Q.; Evans, T.; Chen, S. A human iPSC-array-based GWAS identifies a virus susceptibility locus in the NDUFA4 gene and functional variants. Cell Stem Cell 2022, 29, 1475-1490. DOI: 10.1016/j.stem.2022.09.008 PMID: 36206731 | |
Carl, Ayala | Reynolds, M. J.; Hachicho, C.; Carl, A. G.; Gong, R.; Alushin, G. M. Bending forces and nucleotide state jointly regulate F-actin structure. Nature 2022, 611, 380–386. DOI: 10.1038/s41586-022-05366-w PMID: 36289330 |
Uson, M. L.; Carl, A.; Goldgur, Y.; Shuman, S. Crystal structure and mutational analysis of Mycobacterium smegmatis FenA highlight active site amino acids and three metal ions essential for flap endonuclease and 5′ exonuclease activities. Nucleic Acids Res. 2018, 46, 4164–4175. DOI: 10.1093/nar/gky238 PMID: 29635474 | |
Chaker-Margot, Malik | Singh, S.; Vanden Broeck, A.; Miller, L.; Chaker-Margot, M.; Klinge, S. Nucleolar maturation of the human small subunit processome. Science 2021, 373, eabj5338. DOI: 10.1126/science.abj5338 PMID: 34516797 |
Chaker-Margot, M.; Klinge, S. Assembly and early maturation of large subunit precursors. RNA 2019, 25, 465–471. DOI: 10.1261/rna.069799.118 PMID: 30670483 | |
Bolze, A.; Boisson, B.; Bosch, B.; Antipenko, A.; Bouaziz, M.; Sackstein, P.; Chaker-Margot, M.; Barlogis, V.; Briggs, T.; Colino, E.; Elmore, A. C.; Fischer, A.; Genel, F.; Hewlett, A.; Jedidi, M.; Kelecic, J.; Krüger, R.; Ku, C. L.; Kumararatne, D.; Lefevre-Utile, A.; Loughlin, S.; Mahlaoui, N.; Markus, S.; Garcia, J. M.; Nizon, M.; Oleastro, M.; Pac, M.; Picard, C.; Pollard, A. J.; Rodriguez-Gallego, C.; Thomas, C.; Von Bernuth, H.; Worth, A.; Meyts, I.; Risolino, M.; Selleri, L.; Puel, A.; Klinge, S.; Abel, L.; Casanova, J. L. Incomplete penetrance for isolated congenital asplenia in humans with mutations in translated and untranslated RPSA exons. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, E8007–E8016. DOI: 10.1073/pnas.1805437115 PMID: 30072435 | |
Chaker-Margot, M.* Assembly of the small ribosomal subunit in yeast: Mechanism and regulation. RNA 2018, 24, 881–891. DOI: 10.1261/rna.066985.118 PMID: 29712726 | |
Sanghai, Z. A.†; Miller, L.†; Molloy, K. R.; Barandun, J.; Hunziker, M.; Chaker-Margot, M.; Wang, J.; Chait, B. T.; Klinge, S. Modular assembly of the nucleolar pre-60S ribosomal subunit. Nature 2018, 556, 126–129. DOI: 10.1038/nature26156 PMID: 29512650 | |
Barandun, J.†; Chaker-Margot, M.†; Hunziker, M.; Molloy, K. R.; Chait, B. T.; Klinge, S. The complete structure of the small-subunit processome. Nat. Struct. Mol. Biol. 2017, 24, 944–953. DOI: 10.1038/nsmb.3472 PMID: 28945246 | |
Chaker-Margot, M.; Barandun, J.; Hunziker, M.; Klinge, S. Architecture of the yeast small subunit processome. Science 2017, 355, eaal1880. DOI: 10.1126/science.aal1880 PMID: 27980088 | |
Hunziker, M.; Barandun, J.; Petfalski, E.; Tan, D.; Delan-Forino, C.; Molloy, K. R.; Kim, K. H.; Dunn-Davies, H.; Shi, Y.; Chaker-Margot, M.; Chait, B. T.; Walz, T.; Tollervey, D.; Klinge, S. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly. Nat. Commun. 2016, 7, 12090. DOI: 10.1038/ncomms12090 PMID: 27354316 | |
Chaker-Margot, M.; Hunziker, M.; Barandun, J.; Dill, B. D.; Klinge, S. Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis. Nat. Struct. Mol. Biol. 2015, 22, 920–923. DOI: 10.1038/nsmb.3111 PMID: 26479197 | |
Chakraborty, Debjani | Feng, Z.; Chakraborty, D.; Dewell, S. B.; Reddy, B. V.; Brady, S. F. Environmental DNA-encoded antibiotics fasamycins A and B inhibit FabF in type II fatty acid biosynthesis. J. Am. Chem. Soc. 2012, 134, 2981–2987. DOI: 10.1021/ja207662w PMID: 22224500 |
Chakraborty, D.; Islam, K.; Luo, M. Facile synthesis and altered ionization efficiency of diverse Nε-alkyllysine-containing peptides. Chem. Commun. (Camb.) 2012, 48, 1514–1516. DOI: 10.1039/c1cc14711k PMID: 21959946 | |
Chakravarty, Anupam | Chakravarty, A. K.; Smith, P.; Jalan, R.; Shuman, S. Structure, mechanism, and specificity of a eukaryal tRNA restriction enzyme involved in self-nonself discrimination. Cell Rep 2014, 7, 339–347. DOI: 10.1016/j.celrep.2014.03.034 PMID: 24726365 |
Das, U.; Chakravarty, A. K.; Remus, B. S.; Shuman, S. Rewriting the rules for end joining via enzymatic splicing of DNA 3´-PO4 and 5´-OH ends. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 20437–20442. DOI: 10.1073/pnas.1314289110 PMID: 24218597 | |
Chakravarty, A. K.; Shuman, S. The sequential 2´,3´-cyclic phosphodiesterase and 3´-phosphate/5´-OH ligation steps of the RtcB RNA splicing pathway are GTP-dependent. Nucleic Acids Res. 2012, 40, 8558–8567. DOI: 10.1093/nar/gks558 PMID: 22730297 | |
Chakravarty, A. K.; Subbotin, R.; Chait, B. T.; Shuman, S. RNA ligase RtcB splices 3´-phosphate and 5´-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3´)pp(5´)G intermediates. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 6072–6077. DOI: 10.1073/pnas.1201207109 PMID: 22474365 | |
Chakravarty, A. K.; Smith, P.; Shuman, S. Structures of RNA 3´-phosphate cyclase bound to ATP reveal the mechanism of nucleotidyl transfer and metal-assisted catalysis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 21034–21039. DOI: 10.1073/pnas.1115560108 PMID: 22167800 | |
Tanaka, N.; Chakravarty, A. K.; Maughan, B.; Shuman, S. Novel mechanism of RNA repair by RtcB via sequential 2´,3´-cyclic phosphodiesterase and 3´-phosphate/5´-hydroxyl ligation reactions. J. Biol. Chem. 2011, 286, 43134–43143. DOI: 10.1074/jbc.M111.302133 PMID: 22045815 | |
Jain, R.; Poulos, M. G.; Gros, J.; Chakravarty, A. K.; Shuman, S. Substrate specificity and mutational analysis of Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA 2011, 17, 1336–1343. DOI: 10.1261/rna.2722711 PMID: 21610213 | |
Chakravarty, A. K.; Shuman, S. RNA 3´-phosphate cyclase (RtcA) catalyzes ligase-like adenylylation of DNA and RNA 5´-monophosphate ends. J. Biol. Chem. 2011, 286, 4117–4122. DOI: 10.1074/jbc.M110.196766 PMID: 21098490 | |
Chao, Xingjuan | Chao, X.; Muff, T. J.; Park, S. Y.; Zhang, S.; Pollard, A. M.; Ordal, G. W.; Bilwes, A. M.; Crane, B. R. A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation. Cell 2006, 124, 561–571. DOI: 10.1016/j.cell.2005.11.046 PMID: 16469702 |
Park, S. Y.; Chao, X.; Gonzalez-Bonet, G.; Beel, B. D.; Bilwes, A. M.; Crane, B. R. Structure and function of an unusual family of protein phosphatases: the bacterial chemotaxis proteins CheC and CheX. Mol. Cell 2004, 16, 563–574. DOI: 10.1016/j.molcel.2004.10.018 PMID: 15546616 | |
Charron, Guillaume | Charron, G.; Li, M. M.; MacDonald, M. R.; Hang, H. C. Prenylome profiling reveals S-farnesylation is crucial for membrane targeting and antiviral activity of ZAP long-isoform. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 11085–11090. DOI: 10.1073/pnas.1302564110 PMID: 23776219 |
Jiang, H.; Khan, S.; Wang, Y.; Charron, G.; He, B.; Sebastian, C.; Du, J.; Kim, R.; Ge, E.; Mostoslavsky, R.; Hang, H. C.; Hao, Q.; Lin, H. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013, 496, 110–113. DOI: 10.1038/nature12038 PMID: 23552949 | |
Hicks, S. W.; Charron, G.; Hang, H. C.; Galán, J. E. Subcellular targeting of Salmonella virulence proteins by host-mediated S-palmitoylation. Cell Host Microbe 2011, 10, 9–20. DOI: 10.1016/j.chom.2011.06.003 PMID: 21767808 | |
Hang, H. C.; Wilson, J. P.; Charron, G. Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking. Acc. Chem. Res. 2011, 44, 699–708. DOI: 10.1021/ar200063v PMID: 21675729 | |
Yount, J. S.; Charron, G.; Hang, H. C. Bioorthogonal proteomics of 15-hexadecynyloxyacetic acid chemical reporter reveals preferential targeting of fatty acid modified proteins and biosynthetic enzymes. Bioorg. Med. Chem. 2012, 20, 650–654. DOI: 10.1016/j.bmc.2011.03.062 PMID: 21524915 | |
Zuckerman, D. M.; Hicks, S. W.; Charron, G.; Hang, H. C.; Machamer, C. E. Differential regulation of two palmitoylation sites in the cytoplasmic tail of the beta1-adrenergic receptor. J. Biol. Chem. 2011, 286, 19014–19023. DOI: 10.1074/jbc.M110.189977 PMID: 21464135 | |
Charron, G.; Tsou, L. K.; Maguire, W.; Yount, J. S.; Hang, H. C. Alkynyl-farnesol reporters for detection of protein S-prenylation in cells. Mol Biosyst 2010, 7, 67–73. DOI: 10.1039/c0mb00183j PMID: 21107478 | |
Yang, Y. Y.; Grammel, M.; Raghavan, A. S.; Charron, G.; Hang, H. C. Comparative analysis of cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics. Chem. Biol. 2010, 17, 1212–1222. DOI: 10.1016/j.chembiol.2010.09.012 PMID: 21095571 | |
Wilson, J. P.; Raghavan, A. S.; Yang, Y. Y.; Charron, G.; Hang, H. C. Proteomic analysis of fatty-acylated proteins in mammalian cells with chemical reporters reveals S-acylation of histone H3 variants. Mol. Cell Proteomics 2011, 10, M110.001198. DOI: 10.1074/mcp.M110.001198 PMID: 21076176 | |
Ivanov, S. S.; Charron, G.; Hang, H. C.; Roy, C. R. Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J. Biol. Chem. 2010, 285, 34686–34698. DOI: 10.1074/jbc.M110.170746 PMID: 20813839 | |
Yount, J. S.; Moltedo, B.; Yang, Y. Y.; Charron, G.; Moran, T. M.; López, C. B.; Hang, H. C. Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat. Chem. Biol. 2010, 6, 610–614. DOI: 10.1038/nchembio.405 PMID: 20601941 | |
Zhang, M. M.; Tsou, L. K.; Charron, G.; Raghavan, A. S.; Hang, H. C. Tandem fluorescence imaging of dynamic S-acylation and protein turnover. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 8627–8632. DOI: 10.1073/pnas.0912306107 PMID: 20421494 | |
Rangan, K. J.; Yang, Y. Y.; Charron, G.; Hang, H. C. Rapid visualization and large-scale profiling of bacterial lipoproteins with chemical reporters. J. Am. Chem. Soc. 2010, 132, 10628–10629. DOI: 10.1021/ja101387b PMID: 20230003 | |
Charron, G.; Wilson, J.; Hang, H. C. Chemical tools for understanding protein lipidation in eukaryotes. Curr. Opin. Chem. Biol. 2009, 13, 382–391. DOI: 10.1016/j.cbpa.2009.07.010 PMID: 19699139 | |
Charron, G.; Zhang, M. M.; Yount, J. S.; Wilson, J.; Raghavan, A. S.; Shamir, E.; Hang, H. C. Robust fluorescent detection of protein fatty-acylation with chemical reporters. J. Am. Chem. Soc. 2009, 131, 4967–4975. DOI: 10.1021/ja810122f PMID: 19281244 | |
Raghavan, A.; Charron, G.; Flexner, J.; Hang, H. C. Chemical probes for profiling fatty acid-associated proteins in living cells. Bioorg. Med. Chem. Lett. 2008, 18, 5982–5986. DOI: 10.1016/j.bmcl.2008.09.083 PMID: 18929483 | |
Chen, Chen | Kim, M.; McCann, J. J.; Fortner, J.; Randall, E.; Chen, C.; Chen, Y.; Yaari, Z.; Wang, Y.; Koder, R. L.; Heller, D. A. Quantum defect sensitization via phase-changing supercharged antibody Fragments. J. Am. Chem. Soc. 2024, 146, 12454–12462. DOI: 10.1021/jacs.4c00149 PMID: 38687180 |
Chen, C.; Wu, Y.; Wang, S. T.; Berisha, N.; Manzari, M. T.; Vogt, K.; Gang, O.; Heller, D. A. Fragment-based drug nanoaggregation reveals drivers of self-assembly. Nat. Commun. 2023, 14, 8340. DOI: 10.1038/s41467-023-43560-0 PMID: 38097573 | |
Antman-Passig, M.; Yaari, Z.; Goerzen, D.; Parikh, R.; Chatman, S.; Komer, L. E.; Chen, C.; Grabarnik, E.; Mathieu, M.; Haimovitz-Friedman, A.; Heller, D. A. Nanoreporter identifies lysosomal storage disease lipid accumulation intracranially. Nano Lett. 2023, 23, 10687–10695. DOI: 10.1021/acs.nanolett.3c02502 PMID: 37889874 | |
Kim, M.; Panagiotakopoulou, M.; Chen, C.; Ruiz, S. B.; Ganesh, K.; Tammela, T.; Heller, D. A. Micro-engineering and nano-engineering approaches to investigate tumour ecosystems. Nat. Rev. Cancer 2023, 23, 581–599. DOI: 10.1038/s41568-023-00593-3 PMID: 37353679 | |
Kim, M.†; Chen, C.†; Yaari, Z.; Frederiksen, R.; Randall, E.; Wollowitz, J.; Cupo, C.; Wu, X.; Shah, J.; Worroll, D.; Lagenbacher, R. E.; Goerzen, D.; Li, Y. M.; An, H.; Wang, Y.; Heller, D. A. Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo. Nat. Chem. Biol. 2023, 19, 1448–1457. DOI: 10.1038/s41589-023-01364-9 PMID: 37322156 | |
Kim, M.; Chen, C.; Wang, P.; Mulvey, J. J.; Yang, Y.; Wun, C.; Antman-Passig, M.; Luo, H. B.; Cho, S.; Long-Roche, K.; Ramanathan, L. V.; Jagota, A.; Zheng, M.; Wang, Y.; Heller, D. A. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nat. Biomed. Eng. 2022, 6, 267–275. DOI: 10.1038/s41551-022-00860-y PMID: 35301449 | |
Chen, C.; Yaari, Z.; Apfelbaum, E.; Grodzinski, P.; Shamay, Y.; Heller, D. A. Merging data curation and machine learning to improve nanomedicines. Adv. Drug Deliv. Rev. 2022, 183, 114172. DOI: 10.1016/j.addr.2022.114172 PMID: 35189266 | |
Chen, Shi | Williams, R. M.†; Chen, S.†; Langenbacher, R. E.; Galassi, T. V.; Harvey, J. D.; Jena, P. V.; Budhathoki-Uprety, J.; Luo, M.; Heller, D. A. Harnessing nanotechnology to expand the toolbox of chemical biology. Nat. Chem. Biol. 2021, 17, 129–137. DOI: 10.1038/s41589-020-00690-6 PMID: 33414556 |
Cai, X. C.; Zhang, T.; Kim, E. J.; Jiang, M.; Wang, K.; Wang, J.; Chen, S.; Zhang, N.; Wu, H.; Li, F.; Dela Seña, C. C.; Zeng, H.; Vivcharuk, V.; Niu, X.; Zheng, W.; Lee, J. P.; Chen, Y.; Barsyte, D.; Szewczyk, M.; Hajian, T.; Ibáñez, G.; Dong, A.; Dombrovski, L.; Zhang, Z.; Deng, H.; Min, J.; Arrowsmith, C. H.; Mazutis, L.; Shi, L.; Vedadi, M.; Brown, P. J.; Xiang, J.; Qin, L. X.; Xu, W.; Luo, M. A chemical probe of CARM1 alters epigenetic plasticity against breast cancer cell invasion. eLife 2019, 8, e47110. DOI: 10.7554/eLife.47110 PMID: 31657716 | |
Chen, S.†; Wiewiora, R. P.†; Meng, F.; Babault, N.; Ma, A.; Yu, W.; Qian, K.; Hu, H.; Zou, H.; Wang, J.; Fan, S.; Blum, G.; Pittella-Silva, F.; Beauchamp, K. A.; Tempel, W.; Jiang, H.; Chen, K.; Skene, R. J.; Zheng, Y. G.; Brown, P. J.; Jin, J.; Luo, C.; Chodera, J. D.; Luo, M. The dynamic conformational landscape of the protein methyltransferase SETD8. eLife 2019, 8, e45403. DOI: 10.7554/eLife.45403 PMID: 31081496 | |
Chen, S.; Kapilashrami, K.; Senevirathne, C.; Wang, Z.; Wang, J.; Linscott, J. A.; Luo, M. Substrate-differentiated transition states of SET7/9-catalyzed lysine methylation. J. Am. Chem. Soc. 2019, 141, 8064–8067. DOI: 10.1021/jacs.9b02553 PMID: 31034218 | |
Chen, Yuanhuang | Kotliar, I. B.; Bendes, A.; Dahl, L.; Chen, Y.; Saarinen, M.; Ceraudo, E.; Dodig-Crnković, T.; Uhlén, M.; Svenningsson, P.; Schwenk, J. M.; Sakmar, T. P. Multiplexed mapping of the interactome of GPCRs with receptor activity-modifying proteins. Sci. Adv. 2024, 10, eado9959. DOI: 10.1126/sciadv.ado9959 PMID: 39083597 |
Chen, Zhen | Chen, Z.; Suzuki, H.; Kobayashi, Y.; Wang, A. C.; DiMaio, F.; Kawashima, S. A.; Walz, T.; Kapoor, T. M. Structural insights into Mdn1, an essential AAA protein required for ribosome biogenesis. Cell 2018, 175, 822–834. DOI: 10.1016/j.cell.2018.09.015 PMID: 30318141 |
Kawashima, S. A.†; Chen, Z.†; Aoi, Y.; Patgiri, A.; Kobayashi, Y.; Nurse, P.; Kapoor, T. M. Potent, reversible, and specific chemical inhibitors of eukaryotic ribosome biogenesis. Cell 2016, 167, 512–524. DOI: 10.1016/j.cell.2016.08.070 PMID: 27667686 († = co-first authors) | |
Chiang, Ethan | Veatch, S. L.; Chiang, E. N.; Sengupta, P.; Holowka, D. A.; Baird, B. A. Quantitative nanoscale analysis of IgE-FcεRI clustering and coupling to early signaling proteins. J Phys Chem B 2012, 116, 6923–6935. DOI: 10.1021/jp300197p PMID: 22397623 |
Veatch, S. L.; Machta, B. B.; Shelby, S. A.; Chiang, E. N.; Holowka, D. A.; Baird, B. A. Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting. PLoS ONE 2012, 7, e31457. DOI: 10.1371/journal.pone.0031457 PMID: 22384026 | |
Chiang, E. N.; Dong, R.; Ober, C. K.; Baird, B. A. Cellular responses to patterned poly(acrylic acid) brushes. Langmuir 2011, 27, 7016–7023. DOI: 10.1021/la200093e PMID: 21557546 | |
Haka, A. S.; Grosheva, I.; Chiang, E.; Buxbaum, A. R.; Baird, B. A.; Pierini, L. M.; Maxfield, F. R. Macrophages create an acidic extracellular hydrolytic compartment to digest aggregated lipoproteins. Mol. Biol. Cell 2009, 20, 4932–4940. DOI: 10.1091/mbc.E09-07-0559 PMID: 19812252 | |
Chistodolou-Rubalcava, Sophia | Leicher, R.†; Osunsade, A.†; Chua, G. N. L.†; Faulkner, S. C.†; Latham, A. P.; Watters, J. W.; Nguyen, T.; Beckwitt, E. C.; Christodoulou-Rubalcava, S.; Young, P. G.; Zhang, B.; David, Y.; Liu, S. Single-stranded nucleic acid binding and coacervation by linker histone H1. Nat. Struct. Mol. Biol. 2022, 29, 463–471. DOI: 10.1038/s41594-022-00760-4 PMID: 35484234 |
Chua, Gabriella | Chua, G. N. L.; Watters, J. W.; Olinares, P. D. B.; Begum, M.; Vostal, L. E.; Luo, J. A.; Chait, B. T.; Liu, S. Differential dynamics specify MeCP2 function at nucleosomes and methylated DNA. Nat. Struct. Mol. Biol. 2024, in press. DOI: 10.1038/s41594-024-01373-9 PMID: 39164525 |
Chua, G. N. L.; Liu, S. When force met fluorescence: Single-molecule manipulation and visualization of protein-DNA interactions. Annu. Rev. Biophys. 2024, 53, 169–191. DOI: 10.1146/annurev-biophys-030822-032904 PMID: 38237015 | |
Chua, G. N. L.*; Vandana, J. J.*; Hsieh, C. C.* Students’ perspective on scientific training. ChemBioChem 2023, 24, e202300054. DOI: 10.1002/cbic.202300054 PMID: 37098995 | |
Leicher, R.†; Osunsade, A.†; Chua, G. N. L.†; Faulkner, S. C.†; Latham, A. P.; Watters, J. W.; Nguyen, T.; Beckwitt, E. C.; Christodoulou-Rubalcava, S.; Young, P. G.; Zhang, B.; David, Y.; Liu, S. Single-stranded nucleic acid binding and coacervation by linker histone H1. Nat. Struct. Mol. Biol. 2022, 29, 463–471. DOI: 10.1038/s41594-022-00760-4 PMID: 35484234 | |
Chui, Ashley | Tsamouri, L. P.; Hsiao, J. C.; Wang, Q.; Geeson, M. B.; Huang, H. C.; Nambiar, D. R.; Zou, M.; Ball, D. P.; Chui, A. J.; Bachovchin, D. A. The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation. Cell Chem. Biol. 2024, in press. DOI: 10.1016/j.chembiol.2024.06.004 PMID: 38991619 |
Orth-He, E. L.†; Huang, H. C.†; Rao, S. D.; Wang, Q.; Chen, Q.; O’Mara, C. M.; Chui, A. J.; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Cross, J. R.; Bachovchin, D. A. Protein folding stress potentiates NLRP1 and CARD8 inflammasome activation. Cell Rep. 2023, 42, 111965. DOI: 10.1016/j.celrep.2022.111965 PMID: 36649711 | |
Hsiao, J. C.; Neugroschl, A. R.; Chui, A. J.; Taabazuing, C. Y.; Griswold, A. R.; Wang, Q.; Huang, H. C.; Orth-He, E. L.; Ball, D. P.; Hiotis, G.; Bachovchin, D. A. A ubiquitin-independent proteasome pathway controls activation of the CARD8 inflammasome. J. Biol. Chem. 2022, 298, 102032. DOI: 10.1016/j.jbc.2022.102032 PMID: 35580636 | |
Rao, S. D.†; Chen, Q.†; Wang, Q.†; Orth-He, E. L.†; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Huang, H. C.; Chui, A. J.; Covelli, D. J.; You, S.; Cross, J. R.; Bachovchin, D. A. M24B aminopeptidase inhibitors selectively activate the CARD8 inflammasome. Nat. Chem. Biol. 2022, 18, 565–574. DOI: 10.1038/s41589-021-00964-7 PMID: 35165443 | |
Chui, A. J.; Griswold, A. R.; Taabazuing, C. Y.; Orth, E. L.; Gai, K.; Rao, S. D.; Ball, D. P.; Hsiao, J. C.; Bachovchin, D. A. Activation of the CARD8 inflammasome requires a disordered region. Cell Rep. 2020, 33, 108264. DOI: 10.1016/j.celrep.2020.108264 PMID: 33053349 | |
Griswold, A. R.; Ball, D. P.; Bhattacharjee, A.; Chui, A. J.; Rao, S. D.; Taabazuing, C. Y.; Bachovchin, D. A. DPP9’s enzymatic activity and not its binding to CARD8 inhibits inflammasome activation. ACS Chem. Biol. 2019, 14, 2424–2429. DOI: 10.1021/acschembio.9b00462 PMID: 31525884 | |
Gai, K.; Okondo, M. C.; Rao, S. D.; Chui, A. J.; Ball, D. P.; Johnson, D. C.; Bachovchin, D. A. DPP8/9 inhibitors are universal activators of functional NLRP1 alleles. Cell Death. Dis. 2019, 10, 587. DOI: 10.1038/s41419-019-1817-5 PMID: 31383852 | |
Chui, A. J.†; Okondo, M. C.†; Rao, S. D.†; Gai, K.; Griswold, A. R.; Johnson, D. C.; Ball, D. P.; Taabazuing, C. Y.; Orth, E. L.; Vittimberga, B. A.; Bachovchin, D. A. N-terminal degradation activates the NLRP1B inflammasome. Science 2019, 364, 82–85. DOI: 10.1126/science.aau1208 PMID: 30872531 | |
Johnson, D. C.†; Taabazuing, C. Y.†; Okondo, M. C.; Chui, A. J.; Rao, S. D.; Brown, F. C.; Reed, C.; Peguero, E.; de Stanchina, E.; Kentsis, A.; Bachovchin, D. A. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 2018, 24, 1151–1156. DOI: 10.1038/s41591-018-0082-y PMID: 29967349 | |
Okondo, M. C.†; Rao, S. D.†; Taabazuing, C. Y.; Chui, A. J.; Poplawski, S. E.; Johnson, D. C.; Bachovchin, D. A. Inhibition of Dpp8/9 activates the Nlrp1b inflammasome. Cell Chem. Biol. 2018, 25, 262–267. DOI: 10.1016/j.chembiol.2017.12.013 PMID: 29396289 | |
Okondo, M. C.; Johnson, D. C.; Sridharan, R.; Go, E. B.; Chui, A. J.; Wang, M. S.; Poplawski, S. E.; Wu, W.; Liu, Y.; Lai, J. H.; Sanford, D. G.; Arciprete, M. O.; Golub, T. R.; Bachovchin, W. W.; Bachovchin, D. A. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat. Chem. Biol. 2017, 13, 46–53. DOI: 10.1038/nchembio.2229 PMID: 27820798 | |
Çìftçì, Hatìce Dìdar | Fortea, E.; Lee, S.; Chadda, R.; Argyros, Y.; Sandal, P.; Mahoney-Kruszka, R.; Ciftci, H. D.; Falzone, M. E.; Huysmans, G.; Robertson, J. L.; Boudker, O.; Accardi, A. Structural basis of pH-dependent activation in a CLC transporter. Nat. Struct. Mol. Biol. 2024, 31, 644–656. DOI: 10.1038/s41594-023-01210-5 PMID: 38279055 |
Reddy, K. D.; Ciftci, D.; Scopelliti, A. J.; Boudker, O. The archaeal glutamate transporter homologue GltPh shows heterogeneous substrate binding. J. Gen. Physiol. 2022, 154, e202213131. DOI: 10.1085/jgp.202213131 PMID: 35452090 | |
Ciftci, D.; Martens, C.; Ghani, V. G.; Blanchard, S. C.; Politis, A.; Huysmans, G. H. M.; Boudker, O. Linking function to global and local dynamics in an elevator-type transporter. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2025520118. DOI: 10.1073/pnas.2025520118 PMID: 34873050 | |
Ciftci, D.; Huysmans, G. H. M.; Wang, X.; He, C.; Terry, D.; Zhou, Z.; Fitzgerald, G.; Blanchard, S. C.; Boudker, O. FRET-based microscopy assay to measure activity of membrane amino acid transporters with single-transporter resolution. Bio Protoc. 2021, 11, e3970. DOI: 10.21769/BioProtoc.3970 PMID: 33889664 | |
Huysmans, G. H. M.; Ciftci, D.; Wang, X.; Blanchard, S. C.; Boudker, O. The high-energy transition state of the glutamate transporter homologue GltPh. EMBO J. 2020, 40, e105415. DOI: 10.15252/embj.2020105415 PMID: 33185289 | |
Ciftci, D.; Huysmans, G. H. M.; Wang, X.; He, C.; Terry, D.; Zhou, Z.; Fitzgerald, G.; Blanchard, S. C.; Boudker, O. Single-molecule transport kinetics of a glutamate transporter homolog shows static disorder. Sci. Adv. 2020, 6, eaaz1949. DOI: 10.1126/sciadv.aaz1949 PMID: 32523985 | |
Cisar, Justin | Lun, S.; Guo, H.; Adamson, J.; Cisar, J. S.; Davis, T. D.; Chavadi, S. S.; Warren, J. D.; Quadri, L. E.; Tan, D. S.; Bishai, W. R. Pharmacokinetic and in vivo efficacy studies of the mycobactin biosynthesis inhibitor salicyl-AMS in mice. Antimicrob. Agents Chemother. 2013, 57, 5138–5140. DOI: 10.1128/AAC.00918-13 PMID: 23856770 |
Lu, X.; Olsen, S. K.; Capili, A. D.; Cisar, J. S.; Lima, C. D.; Tan, D. S. Designed semisynthetic protein inhibitors of Ub/Ubl E1 activating enzymes. J. Am. Chem. Soc. 2010, 132, 1748–1749. DOI: 10.1021/ja9088549 PMID: 20099854 | |
Cisar, J. S.; Tan, D. S. Small molecule inhibition of microbial natural product biosynthesis-an emerging antibiotic strategy. Chem Soc Rev 2008, 37, 1320–1329. DOI: 10.1039/b702780j PMID: 18568158 | |
Cisar, J. S.; Ferreras, J. A.; Soni, R. K.; Quadri, L. E.; Tan, D. S. Exploiting ligand conformation in selective inhibition of non-ribosomal peptide synthetase amino acid adenylation with designed macrocyclic small molecules. J. Am. Chem. Soc. 2007, 129, 7752–7753. DOI: 10.1021/ja0721521 PMID: 17542590 | |
Corwith, Kathryn | Cohen, R.; Corwith, K.; Holowka, D.; Baird, B. Spatiotemporal resolution of mast cell granule exocytosis reveals correlation with Ca2+ wave initiation. J. Cell. Sci. 2012, 125, 2986–2994. DOI: 10.1242/jcs.102632 PMID: 22393234 |
Calloway, N.; Owens, T.; Corwith, K.; Rodgers, W.; Holowka, D.; Baird, B. Stimulated association of STIM1 and Orai1 is regulated by the balance of PtdIns(4,5)P₂ between distinct membrane pools. J. Cell. Sci. 2011, 124, 2602–2610. DOI: 10.1242/jcs.084178 PMID: 21750194 | |
Das, Tandrila | Peng, T.; Das, T.; Ding, K.; Hang, H. C. Functional analysis of protein post-translational modifications using genetic codon expansion. Protein Sci. 2023, 32, e4618. DOI: 10.1002/pro.4618 PMID: 36883310 |
Das, T.; Yang, X.; Lee, H.; Garst, E. H.; Valencia, E.; Chandran, K.; Im, W.; Hang, H. C. S-Palmitoylation and sterol interactions mediate antiviral specificity of IFITMs. ACS Chem. Biol. 2022, 17, 2109–2120. DOI: 10.1021/acschembio.2c00176 PMID: 35861660 | |
Garst, E. H.; Das, T.; Hang, H. C. Chemical approaches for investigating site-specific protein S-fatty acylation. Curr. Opin. Chem. Biol. 2021, 65, 109–117. DOI: 10.1016/j.cbpa.2021.06.004 PMID: 34333222 | |
Garst, E. H.; Lee, H.; Das, T.; Bhattacharya, S.; Percher, A.; Wiewiora, R.; Witte, I. P.; Li, Y.; Peng, T.; Im, W.; Hang, H. C. Site-specific lipidation enhances IFITM3 membrane interactions and antiviral activity. ACS Chem. Biol. 2021, 16, 844–856. DOI: 10.1021/acschembio.1c00013 PMID: 33887136 | |
Das, T.; Yount, J. S.; Hang, H. C. Protein S-palmitoylation in immunity. Open Biol. 2021, 11, 200411. DOI: 10.1098/rsob.200411 PMID: 33653086 | |
Wu, X.; Spence, J. S.; Das, T.; Yuan, X.; Chen, C.; Zhang, Y.; Li, Y.; Sun, Y.; Chandran, K.; Hang, H. C.; Peng, T. Site-specific photo-crosslinking proteomics reveal regulation of IFITM3 trafficking and turnover by VCP/p97 ATPase. Cell Chem. Biol. 2020, 27, 571-585.e6. DOI: 10.1016/j.chembiol.2020.03.004 PMID: 32243810 | |
Spence, J. S.; He, R.; Hoffmann, H. H.; Das, T.; Thinon, E.; Rice, C. M.; Peng, T.; Chandran, K.; Hang, H. C. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat. Chem. Biol. 2019, 15, 259–268. DOI: 10.1038/s41589-018-0213-2 PMID: 30643282 | |
Das, Ushati | Chauleau, M.; Das, U.; Shuman, S. Effects of DNA3´pp5´G capping on 3´ end repair reactions and of an embedded pyrophosphate-linked guanylate on ribonucleotide surveillance. Nucleic Acids Res. 2015, 43, 3197–3207. DOI: 10.1093/nar/gkv179 PMID: 25753667 |
Das, U.; Wang, L. K.; Smith, P.; Munir, A.; Shuman, S. Structures of bacterial polynucleotide kinase in a Michaelis complex with nucleoside triphosphate (NTP)-Mg2+ and 5´-OH RNA and a mixed substrate-product complex with NTP-Mg2+ and a 5´-phosphorylated oligonucleotide. J. Bacteriol. 2014, 196, 4285–4292. DOI: 10.1128/JB.02197-14 PMID: 25266383 | |
Das, U.; Chauleau, M.; Ordonez, H.; Shuman, S. Impact of DNA3´pp5´G capping on repair reactions at DNA 3´ ends. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 11317–11322. DOI: 10.1073/pnas.1409203111 PMID: 25049385 | |
Das, U.; Chakravarty, A. K.; Remus, B. S.; Shuman, S. Rewriting the rules for end joining via enzymatic splicing of DNA 3´-PO4 and 5´-OH ends. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 20437–20442. DOI: 10.1073/pnas.1314289110 PMID: 24218597 | |
Das, U.; Wang, L. K.; Smith, P.; Jacewicz, A.; Shuman, S. Structures of bacterial polynucleotide kinase in a Michaelis complex with GTP•Mg2+ and 5´-OH oligonucleotide and a product complex with GDP•Mg2+ and 5´-PO4 oligonucleotide reveal a mechanism of general acid-base catalysis and the determinants of phosphoacceptor recognition. Nucleic Acids Res. 2014, 42, 1152–1161. DOI: 10.1093/nar/gkt936 PMID: 24150947 | |
Das, U.; Shuman, S. 2´-Phosphate cyclase activity of RtcA: a potential rationale for the operon organization of RtcA with an RNA repair ligase RtcB in Escherichia coli and other bacterial taxa. RNA 2013, 19, 1355–1362. DOI: 10.1261/rna.039917.113 PMID: 23945037 | |
Das, U.; Wang, L. K.; Smith, P.; Shuman, S. Structural and biochemical analysis of the phosphate donor specificity of the polynucleotide kinase component of the bacterial pnkp•hen1 RNA repair system. Biochemistry 2013, 52, 4734–4743. DOI: 10.1021/bi400412x PMID: 23721485 | |
Das, U.; Shuman, S. Mechanism of RNA 2´,3´-cyclic phosphate end healing by T4 polynucleotide kinase-phosphatase. Nucleic Acids Res. 2012, 41, 355–365. DOI: 10.1093/nar/gks977 PMID: 23118482 | |
Wang, L. K.; Das, U.; Smith, P.; Shuman, S. Structure and mechanism of the polynucleotide kinase component of the bacterial Pnkp-Hen1 RNA repair system. RNA 2012, 18, 2277–2286. DOI: 10.1261/rna.036061.112 PMID: 23118415 | |
Das, U.; Smith, P.; Shuman, S. Structural insights to the metal specificity of an archaeal member of the LigD 3´-phosphoesterase DNA repair enzyme family. Nucleic Acids Res. 2012, 40, 828–836. DOI: 10.1093/nar/gkr767 PMID: 21965539 | |
Smith, P.; Nair, P. A.; Das, U.; Zhu, H.; Shuman, S. Structures and activities of archaeal members of the LigD 3´-phosphoesterase DNA repair enzyme superfamily. Nucleic Acids Res. 2011, 39, 3310–3320. DOI: 10.1093/nar/gkq1163 PMID: 21208981 | |
Dave, Richa | Geggier, P.; Dave, R.; Feldman, M. B.; Terry, D. S.; Altman, R. B.; Munro, J. B.; Blanchard, S. C. Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome. J. Mol. Biol. 2010, 399, 576–595. DOI: 10.1016/j.jmb.2010.04.038 PMID: 20434456 |
Dave, R.; Terry, D. S.; Munro, J. B.; Blanchard, S. C. Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophys. J. 2009, 96, 2371–2381. DOI: 10.1016/j.bpj.2008.11.061 PMID: 19289062 | |
Blanchard, S. C.; Altman, R. B.; Geggier, P.; Munro, J. B.; Dave, R.; Feldman, M. B.; Terry, D. S. Single-molecule studies of biomolecules. In Wiley Encyclopedia of Chemical Biology, Begley T. P., Ed. Wiley: New York, 2008; Vol. 4, pp 1–16. DOI: 10.1002/9780470048672.wecb540 | |
DeGrasse, Jeff | DeGrasse, J. A.; DuBois, K. N.; Devos, D.; Siegel, T. N.; Sali, A.; Field, M. C.; Rout, M. P.; Chait, B. T. Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell Proteomics 2009, 8, 2119–2130. DOI: 10.1074/mcp.M900038-MCP200 PMID: 19525551 |
Fenyo, D.; Wang, Q.; DeGrasse, J. A.; Padovan, J. C.; Cadene, M.; Chait, B. T. MALDI sample preparation: the ultra thin layer method. J. Vis. Exp. 2007, e192. DOI: 10.3791/192 PMID: 18978997 | |
DeGrasse, J. A.; Chait, B. T.; Field, M. C.; Rout, M. P. High-yield isolation and subcellular proteomic characterization of nuclear and subnuclear structures from trypanosomes. Methods Mol. Biol. 2008, 463, 77–92. DOI: 10.1007/978-1-59745-406-3_6 PMID: 18951162 | |
Oeffinger, M.; Wei, K. E.; Rogers, R.; DeGrasse, J. A.; Chait, B. T.; Aitchison, J. D.; Rout, M. P. Comprehensive analysis of diverse ribonucleoprotein complexes. Nat. Methods 2007, 4, 951–956. DOI: 10.1038/nmeth1101 PMID: 17922018 | |
Tackett, A. J.; DeGrasse, J. A.; Sekedat, M. D.; Oeffinger, M.; Rout, M. P.; Chait, B. T. I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J. Proteome Res. 2005, 4, 1752–1756. DOI: 10.1021/pr050225e PMID: 16212429 | |
Dossa, Paul | Tsou, L. K.; Lara-Tejero, M.; RoseFigura, J.; Zhang, Z. J.; Wang, Y. C.; Yount, J. S.; Lefebre, M.; Dossa, P. D.; Kato, J.; Guan, F.; Lam, W.; Cheng, Y. C.; Galán, J. E.; Hang, H. C. Antibacterial flavonoids from medicinal plants covalently inactivate Type III protein secretion substrates. J. Am. Chem. Soc. 2016, 138, 2209–2218. DOI: 10.1021/jacs.5b11575 PMID: 26847396 |
Tsou, L. K.; Dossa, P. D.; Hang, H. C. Small molecules aimed at type III secretion systems to inhibit bacterial virulence. MedChemComm 2013, 4, 68–79. DOI: 10.1039/C2MD20213A PMID: 23930198 | |
Grammel, M.; Dossa, P. D.; Taylor-Salmon, E.; Hang, H. C. Cell-selective labeling of bacterial proteomes with an orthogonal phenylalanine amino acid reporter. Chem. Commun. (Camb.) 2012, 48, 1473–1474. DOI: 10.1039/c1cc14939c PMID: 22080199 | |
Yount, J. S.; Tsou, L. K.; Dossa, P. D.; Kullas, A. L.; van der Velden, A. W.; Hang, H. C. Visible fluorescence detection of type III protein secretion from bacterial pathogens. J. Am. Chem. Soc. 2010, 132, 8244–8245. DOI: 10.1021/ja102257v PMID: 20504019 | |
Dottore, Alejandro | Hsia, K. C.; Wilson-Kubalek, E. M.; Dottore, A.; Hao, Q.; Tsai, K. L.; Forth, S.; Shimamoto, Y.; Milligan, R. A.; Kapoor, T. M. Reconstitution of the augmin complex provides insights into its architecture and function. Nat. Cell Biol. 2014, 16, 852–863. DOI: 10.1038/ncb3030 PMID: 25173975 |
Ferguson, Angelica | Juette, M. F.†; Carelli, J. D.†; Rundlet, E. J.†; Brown, A.; Shao, S.; Ferguson, A.; Wasserman, M. R.; Holm, M.; Taunton, J.; Blanchard, S. C. Didemnin B and ternatin-4 differentially inhibit conformational changes in eEF1A required for aminoacyl-tRNA accommodation into mammalian ribosomes. eLife 2022, 11, e81608. DOI: 10.7554/eLife.81608 PMID: 36264623 |
Prokhorova, I.; Altman, R. B.; Djumagulov, M.; Shrestha, J. P.; Urzhumtsev, A.; Ferguson, A.; Chang, C. T.; Yusupov, M.; Blanchard, S. C.; Yusupova, G. Aminoglycoside interactions and impacts on the eukaryotic ribosome. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E10899-E10908. DOI: 10.1073/pnas.1715501114 PMID: 29208708 | |
Ferguson, A.; Wang, L.; Altman, R. B.; Terry, D. S.; Juette, M. F.; Burnett, B. J.; Alejo, J. L.; Dass, R. A.; Parks, M. M.; Vincent, C. T.; Blanchard, S. C. Functional dynamics within the human ribosome regulate the rate of active protein synthesis. Mol. Cell 2015, 60, 475–486. DOI: 10.1016/j.molcel.2015.09.013 PMID: 26593721 | |
Burnett, B. J.; Altman, R. B.; Ferguson, A.; Wasserman, M. R.; Zhou, Z.; Blanchard, S. C. Direct evidence of an elongation factor-Tu/Ts·GTP·aminoacyl-tRNA quaternary complex. J. Biol. Chem. 2014, 289, 23917–23927. DOI: 10.1074/jbc.M114.583385 PMID: 24990941 | |
French, Jarrod | French, J. B.; Begley, T. P.; Ealick, S. E. Structure of trifunctional THI20 from yeast. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 784–791. DOI: 10.1107/S0907444911024814 PMID: 21904031 |
French, J. B.; Ealick, S. E. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 671–677. DOI: 10.1107/S090744491101746X PMID: 21795808 | |
French, J. B.; Neau, D. B.; Ealick, S. E. Characterization of the structure and function of Klebsiella pneumoniae allantoin racemase. J. Mol. Biol. 2011, 410, 447–460. DOI: 10.1016/j.jmb.2011.05.016 PMID: 21616082 | |
French, J. B.; Yates, P. A.; Soysa, D. R.; Boitz, J. M.; Carter, N. S.; Chang, B.; Ullman, B.; Ealick, S. E. The Leishmania donovani UMP synthase is essential for promastigote viability and has an unusual tetrameric structure that exhibits substrate-controlled oligomerization. J. Biol. Chem. 2011, 286, 20930–20941. DOI: 10.1074/jbc.M111.228213 PMID: 21507942 | |
French, J. B.; Cen, Y.; Vrablik, T. L.; Xu, P.; Allen, E.; Hanna-Rose, W.; Sauve, A. A. Characterization of nicotinamidases: steady state kinetic parameters, classwide inhibition by nicotinaldehydes, and catalytic mechanism. Biochemistry 2010, 49, 10421–10439. DOI: 10.1021/bi1012518 PMID: 20979384 | |
French, J. B.; Cen, Y.; Sauve, A. A.; Ealick, S. E. High-resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into the catalytic mechanism and inhibition by aldehydes . Biochemistry 2010, 49, 8803–8812. DOI: 10.1021/bi1012436 PMID: 20853856 | |
French, J. B.; Ealick, S. E. Structural and mechanistic studies on Klebsiella pneumoniae 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. J. Biol. Chem. 2010, 285, 35446–35454. DOI: 10.1074/jbc.M110.156034 PMID: 20826786 | |
French, J. B.; Ealick, S. E. Biochemical and structural characterization of a ureidoglycine aminotransferase in the Klebsiella pneumoniae uric acid catabolic pathway. Biochemistry 2010, 49, 5975–5977. DOI: 10.1021/bi1006755 PMID: 20565126 | |
French, J. B.; Cen, Y.; Sauve, A. A. Plasmodium falciparum Sir2 is an NAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase. Biochemistry 2008, 47, 10227–10239. DOI: 10.1021/bi800767t PMID: 18729382 | |
Garst, Emma | Das, T.; Yang, X.; Lee, H.; Garst, E. H.; Valencia, E.; Chandran, K.; Im, W.; Hang, H. C. S-Palmitoylation and sterol interactions mediate antiviral specificity of IFITMs. ACS Chem. Biol. 2022, 17, 2109–2120. DOI: 10.1021/acschembio.2c00176 PMID: 35861660 |
Garst, E. H.; Das, T.; Hang, H. C. Chemical approaches for investigating site-specific protein S-fatty acylation. Curr. Opin. Chem. Biol. 2021, 65, 109–117. DOI: 10.1016/j.cbpa.2021.06.004 PMID: 34333222 | |
Garst, E. H.; Lee, H.; Das, T.; Bhattacharya, S.; Percher, A.; Wiewiora, R.; Witte, I. P.; Li, Y.; Peng, T.; Im, W.; Hang, H. C. Site-specific lipidation enhances IFITM3 membrane interactions and antiviral activity. ACS Chem. Biol. 2021, 16, 844–856. DOI: 10.1021/acschembio.1c00013 PMID: 33887136 | |
George Cisar, Elizabeth | George, E. A.; Novick, R. P.; Muir, T. W. Cyclic peptide inhibitors of staphylococcal virulence prepared by Fmoc-based thiolactone peptide synthesis. J. Am. Chem. Soc. 2008, 130, 4914–4924. DOI: 10.1021/ja711126e PMID: 18335939 |
Geisinger, E.; George, E. A.; Chen, J.; Muir, T. W.; Novick, R. P. Identification of ligand specificity determinants in AgrC, the Staphylococcus aureus quorum-sensing receptor. J. Biol. Chem. 2008, 283, 8930–8938. DOI: 10.1074/jbc.M710227200 PMID: 18222919 | |
George, E. A.; Muir, T. W. Molecular mechanisms of agr quorum sensing in virulent staphylococci. ChemBioChem 2007, 8, 847–855. DOI: 10.1002/cbic.200700023 PMID: 17457814 | |
Simoneau, C. A.; George, E. A.; Ganem, B. A new approach to four-and five-component Ugi condensations starting from nitriles. Tetrahedron Lett. 2006, 47, 1205–1207. DOI: 10.1016/j.tetlet.2005.12.011 | |
Wright, J. S.; Lyon, G. J.; George, E. A.; Muir, T. W.; Novick, R. P. Hydrophobic interactions drive ligand-receptor recognition for activation and inhibition of staphylococcal quorum sensing. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 16168–16173. DOI: 10.1073/pnas.0404039101 PMID: 15528279 | |
Gerstberger, Stefanie | Meyer, C.; Garzia, A.; Mazzola, M.; Gerstberger, S.; Molina, H.; Tuschl, T. The TIA1 RNA-binding protein family regulates EIF2AK2-mediated stress response and cell cycle progression. Mol. Cell 2018, 69, 622–635. DOI: 10.1016/j.molcel.2018.01.011 PMID: 29429924 |
Gerstberger, S.; Meyer, C.; Benjamin-Hong, S.; Rodriguez, J.; Briskin, D.; Bognanni, C.; Bogardus, K.; Steller, H.; Tuschl, T. The conserved RNA exonuclease Rexo5 is required for 3´ end maturation of 28S rRNA, 5S rRNA, and snoRNAs. Cell Rep. 2017, 21, 758–772. DOI: 10.1016/j.celrep.2017.09.067 PMID: 29045842 | |
Mobin, M. B.; Gerstberger, S.; Teupser, D.; Campana, B.; Charisse, K.; Heim, M. H.; Manoharan, M.; Tuschl, T.; Stoffel, M. The RNA-binding protein vigilin regulates VLDL secretion through modulation of Apob mRNA translation. Nat. Commun. 2016, 7, 12848. DOI: 10.1038/ncomms12848 PMID: 27665711 | |
Gerstberger, S.; Hafner, M.; Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 2014, 15, 829–845. DOI: 10.1038/nrg3813 PMID: 25365966 | |
Gerstberger, S.; Hafner, M.; Ascano, M.; Tuschl, T. Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. Adv. Exp. Med. Biol. 2014, 825, 1–55. DOI: 10.1007/978-1-4939-1221-6_1 PMID: 25201102 | |
Farazi, T. A.; Leonhardt, C. S.; Mukherjee, N.; Mihailovic, A.; Li, S.; Max, K. E.; Meyer, C.; Yamaji, M.; Cekan, P.; Jacobs, N. C.; Gerstberger, S.; Bognanni, C.; Larsson, E.; Ohler, U.; Tuschl, T. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets. RNA 2014, 20, 1090–1102. DOI: 10.1261/rna.045005.114 PMID: 24860013 | |
Gerstberger, S.; Hafner, M.; Tuschl, T. Learning the language of post-transcriptional gene regulation. Genome Biol. 2013, 14, 130. DOI: 10.1186/gb-2013-14-8-130 PMID: 23998708 | |
Hafner, M.; Max, K. E.; Bandaru, P.; Morozov, P.; Gerstberger, S.; Brown, M.; Molina, H.; Tuschl, T. Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition. RNA 2013, 19, 613–626. DOI: 10.1261/rna.036491.112 PMID: 23481595 | |
Ascano, M.; Gerstberger, S.; Tuschl, T. Multi-disciplinary methods to define RNA-protein interactions and regulatory networks. Curr. Opin. Genet. Dev. 2013, 23, 20–28. DOI: 10.1016/j.gde.2013.01.003S0959-437X(13)00011-7 PMID: 23453689 | |
Ascano, M.; Hafner, M.; Cekan, P.; Gerstberger, S.; Tuschl, T. Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip. Rev. RNA 2012, 3, 159–177. DOI: 10.1002/wrna.1103 PMID: 22213601 | |
Greimann, Jaclyn | Flynt, A. S.; Greimann, J. C.; Chung, W. J.; Lima, C. D.; Lai, E. C. MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. Mol. Cell 2010, 38, 900–907. DOI: 10.1016/j.molcel.2010.06.014 PMID: 20620959 |
Greimann, J. C.; Lima, C. D. Reconstitution of RNA exosomes from human and Saccharomyces cerevisiae cloning, expression, purification, and activity assays. Meth. Enzymol. 2008, 448, 185–210. DOI: 10.1016/S0076-6879(08)02610-4 PMID: 19111177 | |
Liu, Q.; Greimann, J. C.; Lima, C. D. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 2006, 127, 1223–1237. DOI: 10.1016/j.cell.2006.10.037 PMID: 17174896 | |
Grunbeck, Amy | Valentin-Hansen, L.; Park, M.; Huber, T.; Grunbeck, A.; Naganathan, S.; Schwartz, T. W.; Sakmar, T. P. Mapping substance P binding sites on the neurokinin-1 receptor using genetic incorporation of a photoreactive amino acid. J. Biol. Chem. 2014, 289, 18045–18054. DOI: 10.1074/jbc.M113.527085 PMID: 24831006 |
Grunbeck, A.; Sakmar, T. P. Probing G protein-coupled receptor-ligand interactions with targeted photoactivatable cross-linkers. Biochemistry 2013, 52, 8625–8632. DOI: 10.1021/bi401300y PMID: 24199838 | |
Naganathan, S.; Grunbeck, A.; Tian, H.; Huber, T.; Sakmar, T. P. Genetically-encoded molecular probes to study G protein-coupled receptors. J. Vis. Exp. 2013, e50588. DOI: 10.3791/50588 PMID: 24056801 | |
Berro, R.; Yasmeen, A.; Abrol, R.; Trzaskowski, B.; Abi-Habib, S.; Grunbeck, A.; Lascano, D.; Goddard, W. A.; Klasse, P. J.; Sakmar, T. P.; Moore, J. P. Use of G-protein-coupled and -uncoupled CCR5 receptors by CCR5 inhibitor-resistant and -sensitive human immunodeficiency virus type 1 variants. J. Virol. 2013, 87, 6569–6581. DOI: 10.1128/JVI.00099-13 PMID: 23468486 | |
Grunbeck, A.; Huber, T.; Sakmar, T. P. Mapping a ligand binding site using genetically encoded photoactivatable crosslinkers. Meth. Enzymol. 2013, 520, 307–322. DOI: 10.1016/B978-0-12-391861-1.00014-9B978-0-12-391861-1.00014-9 PMID: 23332706 | |
Grunbeck, A.; Huber, T.; Abrol, R.; Trzaskowski, B.; Goddard, W. A.; Sakmar, T. P. Genetically encoded photo-cross-linkers map the binding site of an allosteric drug on a G protein-coupled receptor. ACS Chem. Biol. 2012, 7, 967–972. DOI: 10.1021/cb300059z PMID: 22455376 | |
Janz, J. M.; Ren, Y.; Looby, R.; Kazmi, M. A.; Sachdev, P.; Grunbeck, A.; Haggis, L.; Chinnapen, D.; Lin, A. Y.; Seibert, C.; McMurry, T.; Carlson, K. E.; Muir, T. W.; Hunt, S.; Sakmar, T. P. Direct interaction between an allosteric agonist pepducin and the chemokine receptor CXCR4. J. Am. Chem. Soc. 2011, 133, 15878–15881. DOI: 10.1021/ja206661w PMID: 21905700 | |
Grunbeck, A.; Huber, T.; Sachdev, P.; Sakmar, T. P. Mapping the ligand-binding site on a G protein-coupled receptor (GPCR) using genetically encoded photocrosslinkers. Biochemistry 2011, 50, 3411–3413. DOI: 10.1021/bi200214r PMID: 21417335 | |
Knepp, A. M.; Grunbeck, A.; Banerjee, S.; Sakmar, T. P.; Huber, T. Direct measurement of thermal stability of expressed CCR5 and stabilization by small molecule ligands. Biochemistry 2011, 50, 502–511. DOI: 10.1021/bi101059w PMID: 21155586 | |
Guo, Han | Su, H.; Jiang, M.; Senevirathne, C.; Aluri, S.; Zhang, T.; Guo, H.; Xavier-Ferrucio, J.; Jin, S.; Tran, N. T.; Liu, S. M.; Sun, C. W.; Zhu, Y.; Zhao, Q.; Chen, Y.; Cable, L.; Shen, Y.; Liu, J.; Qu, C. K.; Han, X.; Klug, C. A.; Bhatia, R.; Chen, Y.; Nimer, S. D.; Zheng, Y. G.; Iancu-Rubin, C.; Jin, J.; Deng, H.; Krause, D. S.; Xiang, J.; Verma, A.; Luo, M.; Zhao, X. Methylation of dual-specificity phosphatase 4 controls cell differentiation. Cell Rep. 2021, 36, 109421. DOI: 10.1016/j.celrep.2021.109421 PMID: 34320342 |
Guo, H.; Wang, R.; Zheng, W.; Chen, Y.; Blum, G.; Deng, H.; Luo, M. Profiling substrates of protein arginine N-methyltransferase 3 with S-adenosyl-L-methionine analogues. ACS Chem. Biol. 2014, 9, 476–484. DOI: 10.1021/cb4008259 PMID: 24320160 | |
Hann, Zachary | Kochańczyk, T.; Hann, Z. S.; Lux, M. C.; Delos Reyes, A. M. V.; Ji, C.; Tan, D. S.; Lima, C. D. Structural basis for transthiolation intermediates in the ubiquitin pathway. Nature 2024, 633, 216–223. DOI: 10.1038/s41586-024-07828-9 PMID: 39143218 |
Delos Reyes, A. M. V.†; Lux, M. C.†; Hann, Z. S.†; Ji, C.; Kochańczyk, T.; DiBello, M.; Lima, C. D.; Tan, D. S. Design and semisynthesis of biselectrophile-functionalized ubiquitin probes to investigate transthioesterification reactions. Org. Lett. 2024, 26, 4594–4599. DOI: 10.1021/acs.orglett.4c01102 PMID: 38781175 | |
Hann, Z. S.; Metzger, M. B.; Weissman, A. M.; Lima, C. D. Crystal structure of the Schizosaccharomyces pombe U7BR E2-binding region in complex with Ubc7. Acta Crystallogr. F Struct. Biol. Commun. 2019, 75, 552–560. DOI: 10.1107/S2053230X19009786 PMID: 31397327 | |
Hann, Z. S.; Ji, C.; Olsen, S. K.; Lu, X.; Lux, M. C.; Tan, D. S.; Lima, C. D. Structural basis for adenylation and thioester bond formation in the ubiquitin E1. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 15475–15484. DOI: 10.1073/pnas.1905488116 PMID: 31235585 | |
Harbison, Nicholas | Harbison, N. W.; Bhattacharya, S.; Eliezer, D. Assigning backbone NMR resonances for full length tau isoforms: efficient compromise between manual assignments and reduced dimensionality. PLoS ONE 2012, 7, e34679. DOI: 10.1371/journal.pone.0034679 PMID: 22529924 |
Harper, Nathan | Harper, N. J.†; Burnside, C.†; Klinge, S. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature 2023, 614, 175–181. DOI: 10.1038/s41586-022-05621-0 PMID: 36482135 |
Hauver, Jesse | Park, S. R.; Hauver, J.; Zhang, Y.; Revyakin, A.; Coleman, R. A.; Tjian, R.; Chu, S.; Pertsinidis, A. A single-molecule surface-based platform to detect the assembly and function of the human RNA polymerase II transcription machinery. Structure 2020, 28, 1337–1343. DOI: 10.1016/j.str.2020.07.009 PMID: 32763141 |
Braffman, N. R.; Piscotta, F. J.; Hauver, J.; Campbell, E. A.; Link, A. J.; Darst, S. A. Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 1273–1278. DOI: 10.1073/pnas.1817352116 PMID: 30626643 | |
Feklistov, A.; Bae, B.; Hauver, J.; Lass-Napiorkowska, A.; Kalesse, M.; Glaus, F.; Altmann, K. H.; Heyduk, T.; Landick, R.; Darst, S. A. RNA polymerase motions during promoter melting. Science 2017, 356, 863–866. DOI: 10.1126/science.aam7858 PMID: 28546214 | |
Wang, G.; Hauver, J.; Thomas, Z.; Darst, S. A.; Pertsinidis, A. Single-molecule real-time 3D imaging of the transcription cycle by modulation interferometry. Cell 2016, 167, 1839–1852. DOI: 10.1016/j.cell.2016.11.032 PMID: 27984731 | |
Hazra, Amrita | Hazra, A. B.; Han, A. W.; Mehta, A. P.; Mok, K. C.; Osadchiy, V.; Begley, T. P.; Taga, M. E. Anaerobic biosynthesis of the lower ligand of vitamin B₁₂. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 10792–10797. DOI: 10.1073/pnas.1509132112 PMID: 26246619 |
Mehta, A. P.; Abdelwahed, S. H.; Fenwick, M. K.; Hazra, A. B.; Taga, M. E.; Zhang, Y.; Ealick, S. E.; Begley, T. P. Anaerobic 5-hydroxybenzimidazole formation from aminoimidazole ribotide: An unanticipated intersection of thiamin and vitamin B₁₂ biosynthesis. J. Am. Chem. Soc. 2015, 137, 10444–10447. DOI: 10.1021/jacs.5b03576 PMID: 26237670 | |
Lai, R. Y.; Huang, S.; Fenwick, M. K.; Hazra, A.; Zhang, Y.; Rajashankar, K.; Philmus, B.; Kinsland, C.; Sanders, J. M.; Ealick, S. E.; Begley, T. P. Thiamin pyrimidine biosynthesis in Candida albicans: A remarkable reaction between histidine and pyridoxal phosphate. J. Am. Chem. Soc. 2012, 134, 9157–9159. DOI: 10.1021/ja302474a PMID: 22568620 | |
Hazra, A. B.; Han, Y.; Chatterjee, A.; Zhang, Y.; Lai, R. Y.; Ealick, S. E.; Begley, T. P. A missing enzyme in thiamin thiazole biosynthesis: identification of TenI as a thiazole tautomerase. J. Am. Chem. Soc. 2011, 133, 9311–9319. DOI: 10.1021/ja1110514 PMID: 21534620 | |
Chatterjee, A.; Hazra, A. B.; Abdelwahed, S.; Hilmey, D. G.; Begley, T. P. A “radical dance” in thiamin biosynthesis: mechanistic analysis of the bacterial hydroxymethylpyrimidine phosphate synthase. Angew. Chem. Int. Ed. Engl. 2010, 49, 8653–8656. DOI: 10.1002/anie.201003419 PMID: 20886485 | |
Hazra, A.; Chatterjee, A.; Begley, T. P. Biosynthesis of the thiamin thiazole in Bacillus subtilis: Identification of the product of the thiazole synthase-catalyzed reaction. J. Am. Chem. Soc. 2009, 131, 3225–3229. DOI: 10.1021/ja806752h PMID: 19216519 | |
Begley, T. P.; Chatterjee, A.; Hanes, J. W.; Hazra, A.; Ealick, S. E. Cofactor biosynthesis – Still yielding fascinating new biological chemistry. Curr. Opin. Chem. Biol. 2008, 12, 118–125. DOI: 10.1016/j.cbpa.2008.02.006 PMID: 18314013 | |
Hazra, A.; Chatterjee, A.; Chatterjee. D.; Hilmey, D. G.; Sanders, J. M.; Hanes, J. W.; Krishnamoorthy. K.; McCulloch, K. M.; Waitner, M. J.; O’Leary, S.; Begley, T. P.; Snider, M. J. Coenzyme and prosthetic group biosynthesis. In Encyclopedia of Microbiology; 3rd Ed. Schaechter, M., Ed. Elsevier: Oxford, 2009; pp 79–88. DOI: 10.1016/B978-012373944-5.00069-9 | |
Hebert, Jakob | Sheban, D.; Shani, T.; Maor, R.; Aguilera-Castrejon, A.; Mor, N.; Oldak, B.; Shmueli, M. D.; Eisenberg-Lerner, A.; Bayerl, J.; Hebert, J.; Viukov, S.; Chen, G.; Kacen, A.; Krupalnik, V.; Chugaeva, V.; Tarazi, S.; Rodríguez-delaRosa, A.; Zerbib, M.; Ulman, A.; Masarwi, S.; Kupervaser, M.; Levin, Y.; Shema, E.; David, Y.; Novershtern, N.; Hanna, J. H.; Merbl, Y. SUMOylation of linker histone H1 drives chromatin condensation and restriction of embryonic cell fate identity. Mol. Cell 2022, 82, 106–122. DOI: 10.1016/j.molcel.2021.11.011 PMID: 34875212 |
Osunsade, A.; Prescott, N. A.; Hebert, J. M.; Ray, D. M.; Jmeian, Y.; Lorenz, I. C.; David, Y. A robust method for the purification and characterization of recombinant human histone H1 variants. Biochemistry 2019, 58, 171–176. DOI: 10.1021/acs.biochem.8b01060 PMID: 30585724 | |
Hekstra, Doeke | Hekstra, D. R.; Cocco, S.; Monasson, R.; Leibler, S. Trend and fluctuations: Analysis and design of population dynamics measurements in replicate ecosystems. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2013, 88, 062714. PMID: 24483493 |
Hekstra, D. R.; Leibler, S. Contingency and statistical laws in replicate microbial closed ecosystems. Cell 2012, 149, 1164–1173. DOI: 10.1016/j.cell.2012.03.040 PMID: 22632978 | |
Frentz, Z.; Kuehn, S.; Hekstra, D.; Leibler, S. Microbial population dynamics by digital in-line holographic microscopy. Rev. Sci. Instrum. 2010, 81, 084301. DOI: 10.1063/1.3473937 PMID: 20815617 | |
Siegel, T. N.; Hekstra, D. R.; Wang, X.; Dewell, S.; Cross, G. A. Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res. 2010, 38, 4946–4957. DOI: 10.1093/nar/gkq237 PMID: 20385579 | |
Siegel, T. N.; Hekstra, D. R.; Kemp, L. E.; Figueiredo, L. M.; Lowell, J. E.; Fenyo, D.; Wang, X.; Dewell, S.; Cross, G. A. Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev. 2009, 23, 1063–1076. DOI: 10.1101/gad.1790409 PMID: 19369410 | |
Siegel, T. N.; Hekstra, D. R.; Cross, G. A. Analysis of the Trypanosoma brucei cell cycle by quantitative DAPI imaging. Mol. Biochem. Parasitol. 2008, 160, 171–174. DOI: 10.1016/j.molbiopara.2008.04.004 PMID: 18501977 | |
Hekstra, D.; Taussig, A. R.; Magnasco, M.; Naef, F. Absolute mRNA concentrations from sequence-specific calibration of oligonucleotide arrays. Nucleic Acids Res. 2003, 31, 1962–1968. PMID: 12655013 | |
Hiotis, Giorgos | Yang, S.†; Hiotis, G.†; Wang, Y.; Chen, J.; Wang, J. H.; Kim, M.; Reinherz, E. L.; Walz, T. Dynamic HIV-1 spike motion creates vulnerability for its membrane-bound tripod to antibody attack. Nat. Commun. 2022, 13, 6393. DOI: 10.1038/s41467-022-34008-y PMID: 36302771 |
Hsiao, J. C.; Neugroschl, A. R.; Chui, A. J.; Taabazuing, C. Y.; Griswold, A. R.; Wang, Q.; Huang, H. C.; Orth-He, E. L.; Ball, D. P.; Hiotis, G.; Bachovchin, D. A. A ubiquitin-independent proteasome pathway controls activation of the CARD8 inflammasome. J Biol Chem 2022, 298, 102032. DOI: 10.1016/j.jbc.2022.102032 PMID: 35580636 | |
Horioka-Duplix, Mizuho | Mattheisen, J. M.†; Rasmussen, V. A.†; Ceraudo, E.; Kolodzinski, A.; Horioka-Duplix, M.; Sakmar, T. P.; Huber, T. Application of bioluminescence resonance energy transfer to quantitate cell-surface expression of membrane proteins. Anal. Biochem. 2024, 684, 115361. DOI: 10.1016/j.ab.2023.115361 PMID: 37865268 | Kotliar, I. B.; Ceraudo, E.; Kemelmakher-Liben, K.; Oren, D. A.; Lorenzen, E.; Dodig-Crnković, T.; Horioka-Duplix, M.; Huber, T.; Schwenk, J. M.; Sakmar, T. P. Itch receptor MRGPRX4 interacts with the receptor activity-modifying proteins. J. Biol. Chem. 2023, 299, 104664. DOI: 10.1016/j.jbc.2023.104664 PMID: 37003505 |
Ceraudo, E.†; Horioka, M.†; Mattheisen, J. M.; Hitchman, T. D.; Moore, A. R.; Kazmi, M. A.; Chi, P.; Chen, Y.; Sakmar, T. P.; Huber, T. Direct evidence that the GPCR CysLTR2 mutant causative of uveal melanoma is constitutively active with highly biased signaling. J. Biol. Chem. 2021, 296, 100163. DOI: 10.1074/jbc.RA120.015352 PMID: 33288675 | |
Horioka, M.; Ceraudo, E.; Lorenzen, E.; Sakmar, T. P.; Huber, T. Purinergic receptors crosstalk with CCR5 to amplify Ca2+ signaling. Cell. Mol. Neurobiol. 2020, 41, 1085–1101. DOI: 10.1007/s10571-020-01002-1 PMID: 33216235 | |
Horioka, M.; Huber, T.; Sakmar, T. P. Playing tag with your favorite GPCR using CRISPR. Cell Chem. Biol. 2020, 27, 642–644. DOI: 10.1016/j.chembiol.2020.06.001 PMID: 32559501 | |
Rico, C. A.; Berchiche, Y. A.; Horioka, M.; Peeler, J. C.; Lorenzen, E.; Tian, H.; Kazmi, M. A.; Fürstenberg, A.; Gaertner, H.; Hartley, O.; Sakmar, T. P.; Huber, T. High-affinity binding of chemokine analogs that display ligand bias at the HIV-1 coreceptor CCR5. Biophys. J. 2019, 117, 903–919. DOI: 10.1016/j.bpj.2019.07.043 PMID: 31421836 | |
Hou, Qian | Hagen, T.; Litke, J. L.; Nasir, N.; Hou, Q.; Jaffrey, S. R. Engineering acyclovir-induced RNA nanodevices for reversible and tunable control of aptamer function. Cell Chem. Biol. 2024, in press. DOI: 10.1016/j.chembiol.2024.07.017 PMID: 39191249 |
Hou, Q.; Jaffrey, S. R. Synthetic biology tools to promote the folding and function of RNA aptamers in mammalian cells. RNA Biol. 2023, 20, 198–206. DOI: 10.1080/15476286.2023.2206248 PMID: 37129556 | |
Hsieh, Chun-Cheng | Chua, G. N. L.*; Vandana, J. J.*; Hsieh, C. C.* Students’ perspective on scientific training. ChemBioChem 2023, 24, e202300054. DOI: 10.1002/cbic.202300054 PMID: 37098995 |
Huang, Hsin-Che | Tsamouri, L. P.; Hsiao, J. C.; Wang, Q.; Geeson, M. B.; Huang, H. C.; Nambiar, D. R.; Zou, M.; Ball, D. P.; Chui, A. J.; Bachovchin, D. A. The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation. Cell Chem. Biol. 2024, in press. DOI: 10.1016/j.chembiol.2024.06.004 PMID: 38991619 |
Prescott, N. A.*; Huang, H. C.* Scientific fluency as the greatest strength of chemical biologists. ChemBioChem 2023, 24, e202300053. DOI: 10.1002/cbic.202300053 PMID: 36929107 | |
Chen, Q.; Wang, A.; Covelli, D. J.; Bhattacharjee, A.; Wang, Q.; Orth-He, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Hsiao, J. C.; Bachovchin, D. A. Optimized M24B aminopeptidase inhibitors for CARD8 inflammasome activation. J. Med. Chem. 2023, 66, 2589–2607. DOI: 10.1021/acs.jmedchem.2c01535 PMID: 36724486 | |
Orth-He, E. L.†; Huang, H. C.†; Rao, S. D.; Wang, Q.; Chen, Q.; O’Mara, C. M.; Chui, A. J.; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Cross, J. R.; Bachovchin, D. A. Protein folding stress potentiates NLRP1 and CARD8 inflammasome activation. Cell Rep. 2023, 42, 111965. DOI: 10.1016/j.celrep.2022.111965 PMID: 36649711 | |
Wang, Q.; Hsiao, J. C.; Yardeny, N.; Huang, H. C.; O’Mara, C. M.; Orth-He, E. L.; Ball, D. P.; Zhang, Z.; Bachovchin, D. A. The NLRP1 and CARD8 inflammasomes detect reductive stress. Cell Rep. 2023, 42, 111966. DOI: 10.1016/j.celrep.2022.111966 PMID: 36649710 | |
Ball, D. P.; Tsamouri, L. P.; Wang, A. E.; Huang, H. C.; Warren, C. D.; Wang, Q.; Edmondson, I. H.; Griswold, A. R.; Rao, S. D.; Johnson, D. C.; Bachovchin, D. A. Oxidized thioredoxin-1 restrains the NLRP1 inflammasome. Sci. Immunol. 2022, 7, eabm7200. DOI: 10.1126/sciimmunol.abm7200 PMID: 36332009 | |
Volpe, M. R.; Velilla, J. A.; Daniel-Ivad, M.; Yao, J. J.; Stornetta, A.; Villalta, P. W.; Huang, H. C.; Bachovchin, D. A.; Balbo, S.; Gaudet, R.; Balskus, E. P. A small molecule inhibitor prevents gut bacterial genotoxin production. Nat. Chem. Biol. 2023, 19, 159–167. DOI: 10.1038/s41589-022-01147-8 PMID: 36253549 | |
Hsiao, J. C.; Neugroschl, A. R.; Chui, A. J.; Taabazuing, C. Y.; Griswold, A. R.; Wang, Q.; Huang, H. C.; Orth-He, E. L.; Ball, D. P.; Hiotis, G.; Bachovchin, D. A. A ubiquitin-independent proteasome pathway controls activation of the CARD8 inflammasome. J. Biol. Chem. 2022, 298, 102032. DOI: 10.1016/j.jbc.2022.102032 PMID: 35580636 | |
Griswold, A. R.; Huang, H. C.; Bachovchin, D. A. The NLRP1 inflammasome induces pyroptosis in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 2022, 63, 2. DOI: 10.1167/iovs.63.3.2 PMID: 35238869 | |
Rao, S. D.†; Chen, Q.†; Wang, Q.†; Orth-He, E. L.†; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Huang, H. C.; Chui, A. J.; Covelli, D. J.; You, S.; Cross, J. R.; Bachovchin, D. A. M24B aminopeptidase inhibitors selectively activate the CARD8 inflammasome. Nat. Chem. Biol. 2022, 18, 565–574. DOI: 10.1038/s41589-021-00964-7 PMID: 35165443 | |
Johnson, D. C.; Okondo, M. C.; Orth, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Bachovchin, D. A. DPP8/9 inhibitors activate the CARD8 inflammasome in resting lymphocytes. Cell Death Dis. 2020, 11, 628. DOI: 10.1038/s41419-020-02865-4 PMID: 32796818 | |
Iaea, David | Zhang, X.; Xie, H.; Iaea, D.; Khelashvili, G.; Weinstein, H.; Maxfield, F. R. Phosphatidylinositol phosphates modulate interactions between the StarD4 sterol trafficking protein and lipid membranes. J. Biol. Chem. 2022, 298, 102058. DOI: 10.1016/j.jbc.2022.102058 PMID: 35605664 |
Iaea, D. B.; Spahr, Z. R.; Singh, R. K.; Chan, R. B.; Zhou, B.; Bareja, R.; Elemento, O.; Di Paolo, G.; Zhang, X.; Maxfield, F. R. Stable reduction of STARD4 alters cholesterol regulation and lipid homeostasis. Biochim. Biophys. Acta – Mol. Cell. Biol. Lipids 2020, 1865, 158609. DOI: 10.1016/j.bbalip.2020.158609 PMID: 31917335 | |
Iaea, D. B.; Maxfield, F. R. Membrane order in the plasma membrane and endocytic recycling compartment. PLoS ONE 2017, 12, e0188041. DOI: 10.1371/journal.pone.0188041 PMID: 29125865 | |
Stefan, C. J.; Trimble, W. S.; Grinstein, S.; Drin, G.; Reinisch, K.; De Camilli, P.; Cohen, S.; Valm, A. M.; Lippincott-Schwartz, J.; Levine, T. P.; Iaea, D. B.; Maxfield, F. R.; Futter, C. E.; Eden, E. R.; Judith, D.; van Vliet, A. R.; Agostinis, P.; Tooze, S. A.; Sugiura, A.; McBride, H. M. Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biol. 2017, 15, 102. DOI: 10.1186/s12915-017-0432-0 PMID: 29089042 | |
Jena, P. V.; Roxbury, D.; Galassi, T. V.; Akkari, L.; Horoszko, C. P.; Iaea, D. B.; Budhathoki-Uprety, J.; Pipalia, N.; Haka, A. S.; Harvey, J. D.; Mittal, J.; Maxfield, F. R.; Joyce, J. A.; Heller, D. A. A carbon nanotube optical reporter maps endolysosomal lipid flux. ACS Nano 2017, 11, 10689–10703. DOI: 10.1021/acsnano.7b04743 PMID: 28898055 | |
Iaea, D. B.; Mao, S.; Lund, F. W.; Maxfield, F. R. Role of STARD4 in sterol transport between the endocytic recycling compartment and the plasma membrane. Mol. Biol. Cell 2017, 28, 1111–1122. DOI: 10.1091/mbc.E16-07-0499 PMID: 28209730 | |
Maxfield, F. R.; Iaea, D. B.; Pipalia, N. H. Role of STARD4 and NPC1 in intracellular sterol transport. Biochem. Cell Biol. 2016, 94, 499–506. PMID: 27421092 | |
Iaea, D. B.; Gale, S. E.; Bielska, A. A.; Krishnan, K.; Fujiwara, H.; Jiang, H.; Maxfield, F. R.; Schlesinger, P. H.; Covey, D. F.; Schaffer, J. E.; Ory, D. S. A novel intrinsically fluorescent probe for study of uptake and trafficking of 25-hydroxycholesterol. J. Lipid Res. 2015, 56, 2408–2419. DOI: 10.1194/jlr.D064287 PMID: 26497473 | |
Iaea, D. B.; Dikiy, I.; Kiburu, I.; Eliezer, D.; Maxfield, F. R. STARD4 membrane interactions and sterol binding. Biochemistry 2015, 54, 4623–4636. DOI: 10.1021/acs.biochem.5b00618 PMID: 26168008 | |
Iaea, D. B.; Maxfield, F. R. Cholesterol trafficking and distribution. Essays Biochem. 2015, 57, 43–55. DOI: 10.1042/bse0570043 PMID: 25658343 | |
Iqbal, Hala | Iqbal, H. A.; Low-Beinart, L.; Obiajulu, J. U.; Brady, S. F. Natural product discovery through improved functional metagenomics in Streptomyces. J. Am. Chem. Soc. 2016, 138, 9341–9344. DOI: 10.1021/jacs.6b02921 PMID: 27447056 |
Iqbal, H. A.; Craig, J. W.; Brady, S. F. Antibacterial enzymes from the functional screening of metagenomic libraries hosted in Ralstonia metallidurans. FEMS Microbiol. Lett. 2014, 354, 19–26. DOI: 10.1111/1574-6968.12431 PMID: 24661178 | |
Iqbal, H. A.; Feng, Z.; Brady, S. F. Biocatalysts and small molecule products from metagenomic studies. Curr. Opin. Chem. Biol. 2012, 16, 109–116. DOI: 10.1016/j.cbpa.2012.02.015 PMID: 22455793 | |
Işik, Mehtap | Grosjean, H.; Işık, M.; Aimon, A.; Mobley, D.; Chodera, J.; von Delft, F.; Biggin, P. C. SAMPL7 protein-ligand challenge: A community-wide evaluation of computational methods against fragment screening and pose-prediction. J Comput Aided Mol Des 2022, 36, 291–311. DOI: 10.1007/s10822-022-00452-7 PMID: 35426591 |
Bahr, M. N.; Nandkeolyar, A.; Kenna, J. K.; Nevins, N.; Da Vià, L.; Işık, M.; Chodera, J. D.; Mobley, D. L. Automated high throughput pKa and distribution coefficient measurements of pharmaceutical compounds for the SAMPL8 blind prediction challenge. J. Comput. Aided Mol. Des. 2021, 35, 1141–1155. DOI: 10.1007/s10822-021-00427-0 PMID: 34714468 | |
Işık, M.; Rustenburg, A. S.; Rizzi, A.; Gunner, M. R.; Mobley, D. L.; Chodera, J. D. Overview of the SAMPL6 pKa challenge: Evaluating small molecule microscopic and macroscopic pKa predictions. J. Comput. Aided Mol. Des. 2021, 35, 131–166. DOI: 10.1007/s10822-020-00362-6 PMID: 33394238 | |
Işık, M.; Bergazin, T. D.; Fox, T.; Rizzi, A.; Chodera, J. D.; Mobley, D. L. Assessing the accuracy of octanol-water partition coefficient predictions in the SAMPL6 Part II log P Challenge. J. Comput. Aided Mol. Des. 2020, 34, 335–370. DOI: 10.1007/s10822-020-00295-0 PMID: 32107702 | |
Gunner, M. R.; Murakami, T.; Rustenburg, A. S.; Işık, M.; Chodera, J. D. Standard state free energies, not pKas, are ideal for describing small molecule protonation and tautomeric states. J. Comput. Aided Mol. Des. 2020, 34, 561–573. DOI: 10.1007/s10822-020-00280-7 PMID: 32052350 | |
Işık, M.; Levorse, D.; Mobley, D. L.; Rhodes, T.; Chodera, J. D. Octanol-water partition coefficient measurements for the SAMPL6 blind prediction challenge. J. Comput. Aided Mol. Des. 2020, 34, 405–420. DOI: 10.1007/s10822-019-00271-3 PMID: 31858363 | |
Işık, M.; Levorse, D.; Rustenburg, A. S.; Ndukwe, I. E.; Wang, H.; Wang, X.; Reibarkh, M.; Martin, G. E.; Makarov, A. A.; Mobley, D. L.; Rhodes, T.; Chodera, J. D. pKa measurements for the SAMPL6 prediction challenge for a set of kinase inhibitor-like fragments. J. Comput. Aided Mol. Des. 2018, 32, 1117–1138. DOI: 10.1007/s10822-018-0168-0 PMID: 30406372 | |
Albanese, S. K.; Parton, D. L.; Işık, M.; Rodríguez-Laureano, L.; Hanson, S. M.; Behr, J. M.; Gradia, S.; Jeans, C.; Levinson, N. M.; Seeliger, M. A.; Chodera, J. D. An open library of human kinase domain constructs for automated bacterial expression. Biochemistry 2018, 57, 4675–4689. DOI: 10.1021/acs.biochem.7b01081 PMID: 30004690 | |
Shamay, Y.; Shah, J.; Işık, M.; Mizrachi, A.; Leibold, J.; Tschaharganeh, D. F.; Roxbury, D.; Budhathoki-Uprety, J.; Nawaly, K.; Sugarman, J. L.; Baut, E.; Neiman, M. R.; Dacek, M.; Ganesh, K. S.; Johnson, D. C.; Sridharan, R.; Chu, K. L.; Rajasekhar, V. K.; Lowe, S. W.; Chodera, J. D.; Heller, D. A. Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 2018, 17, 361–368. DOI: 10.1038/s41563-017-0007-z PMID: 29403054 | |
Jain, Ruchi | Jain, R.; Poulos, M. G.; Gros, J.; Chakravarty, A. K.; Shuman, S. Substrate specificity and mutational analysis of Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA 2011, 17, 1336–1343. DOI: 10.1261/rna.2722711 PMID: 21610213 |
Jain, R.; Shuman, S. Active site mapping and substrate specificity of bacterial Hen1, a manganese-dependent 3´ terminal RNA ribose 2´-O-methyltransferase. RNA 2011, 17, 429–438. DOI: 10.1261/rna.2500711 PMID: 21205839 | |
Jain, R.; Shuman, S. Bacterial Hen1 is a 3´ terminal RNA ribose 2´-O-methyltransferase component of a bacterial RNA repair cassette. RNA 2010, 16, 316–323. DOI: 10.1261/rna.1926510 PMID: 20007328 | |
Keppetipola, N.; Jain, R.; Meineke, B.; Diver, M.; Shuman, S. Structure-activity relationships in Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA 2009, 15, 1036–1044. DOI: 10.1261/rna.1637809 PMID: 19383764 | |
Jain, R.; Shuman, S. Characterization of a thermostable archaeal polynucleotide kinase homologous to human Clp1. RNA 2009, 15, 923–931. DOI: 10.1261/rna.1492809 PMID: 19299550 | |
Jain, R.; Shuman, S. Polyphosphatase activity of CthTTM, a bacterial triphosphate tunnel metalloenzyme. J. Biol. Chem. 2008, 283, 31047–31057. DOI: 10.1074/jbc.M805392200 PMID: 18782773 | |
Keppetipola, N.; Jain, R.; Shuman, S. Novel triphosphate phosphohydrolase activity of Clostridium thermocellum TTM, a member of the triphosphate tunnel metalloenzyme superfamily. J. Biol. Chem. 2007, 282, 11941–11949. DOI: 10.1074/jbc.M611328200 PMID: 17303560 | |
Jaramillo Cartagena, Alexis | Carson, D. V.; Zhang, Y.; So, L.; Cheung-Lee, W. L.; Cartagena, A. J.; Darst, S. A.; Link, A. J. Discovery, characterization, and bioactivity of the achromonodins: Lasso peptides encoded by Achromobacter. J. Nat. Prod. 2023, 86, 2448–2456. DOI: 10.1021/acs.jnatprod.3c00536 PMID: 37870195 |
Cheung-Lee, W. L.; Parry, M.; Zong, C.; Jaramillo Cartagena, A.; Darst, S.; Connell, N.; Russo, R.; Link, A. J. Discovery of ubonodin, an antimicrobial lasso peptide active against members of the Burkholderia cepacia complex. ChemBioChem 2020, 21, 1335–1340. DOI: 10.1002/cbic.201900707 PMID: 31765515 | |
Jaramillo Cartagena, A.; Banta, A. B.; Sathyan, N.; Ross, W.; Gourse, R. L.; Campbell, E. A.; Darst, S. A. Structural basis for transcription activation by Crl through tethering of σS and RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18923–18927. DOI: 10.1073/pnas.1910827116 PMID: 31484766 | |
Cheung-Lee, W. L.; Parry, M. E.; Jaramillo Cartagena, A.; Darst, S. A.; Link, A. J. Discovery and structure of the antimicrobial lasso peptide citrocin. J. Biol. Chem. 2019, 294, 6822–6830. DOI: 10.1074/jbc.RA118.006494 PMID: 30846564 | |
McCoy, J. G.; Rusinova, R.; Kim, D. M.; Kowal, J.; Banerjee, S.; Jaramillo Cartagena, A.; Thompson, A. N.; Kolmakova-Partensky, L.; Stahlberg, H.; Andersen, O. S.; Nimigean, C. M. A KcsA/MloK1 chimeric ion channel has lipid-dependent ligand-binding energetics. J. Biol. Chem. 2014, 289, 9535–9546. DOI: 10.1074/jbc.M113.543389 PMID: 24515111 | |
Jogini, Vishwanath | Cordero-Morales, J. F.; Jogini, V.; Lewis, A.; Vásquez, V.; Cortes, D. M.; Roux, B.; Perozo, E. Molecular driving forces determining potassium channel slow inactivation. Nat. Struct. Mol. Biol. 2007, 14, 1062–1069. DOI: 10.1038/nsmb1309 PMID: 17922012 |
Jogini, V.; Roux, B. Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment. Biophys. J. 2007, 93, 3070–3082. DOI: 10.1529/biophysj.107.112540 PMID: 17704179 | |
Faraldo-Gómez, J. D.; Kutluay, E.; Jogini, V.; Zhao, Y.; Heginbotham, L.; Roux, B. Mechanism of intracellular block of the KcsA K+ channel by tetrabutylammonium: insights from X-ray crystallography, electrophysiology and replica-exchange molecular dynamics simulations. J. Mol. Biol. 2006, 365, 649–662. DOI: 10.1016/j.jmb.2006.09.069 PMID: 17070844 | |
Cordero-Morales, J. F.; Cuello, L. G.; Zhao, Y.; Jogini, V.; Cortes, D. M.; Roux, B.; Perozo, E. Molecular determinants of gating at the potassium-channel selectivity filter. Nat. Struct. Mol. Biol. 2006, 13, 311–318. DOI: 10.1038/nsmb1069 PMID: 16532009 | |
Jogini, V.; Roux, B. Electrostatics of the intracellular vestibule of K+ channels. J. Mol. Biol. 2005, 354, 272–288. DOI: 10.1016/j.jmb.2005.09.031 PMID: 16242718 | |
Candi, E.; Paradisi, A.; Terrinoni, A.; Pietroni, V.; Oddi, S.; Cadot, B.; Jogini, V.; Meiyappan, M.; Clardy, J.; Finazzi-Agro, A.; Melino, G. Transglutaminase 5 is regulated by guanine-adenine nucleotides. Biochem. J. 2004, 381, 313–319. DOI: 10.1042/BJ20031474 PMID: 15038793 | |
Johnson, Darren | Ball, D. P.; Tsamouri, L. P.; Wang, A. E.; Huang, H. C.; Warren, C. D.; Wang, Q.; Edmondson, I. H.; Griswold, A. R.; Rao, S. D.; Johnson, D. C.; Bachovchin, D. A. Oxidized thioredoxin-1 restrains the NLRP1 inflammasome. Sci. Immunol. 2022, 7, eabm7200. DOI: 10.1126/sciimmunol.abm7200 PMID: 36332009 |
Johnson, D. C.; Okondo, M. C.; Orth, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Bachovchin, D. A. DPP8/9 inhibitors activate the CARD8 inflammasome in resting lymphocytes. Cell Death Dis. 2020, 11, 628. DOI: 10.1038/s41419-020-02865-4 PMID: 32796818 | |
Ball, D. P.; Taabazuing, C. Y.; Griswold, A. R.; Orth, E. L.; Rao, S. D.; Kotliar, I. B.; Vostal, L. E.; Johnson, D. C.; Bachovchin, D. A. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci. Alliance 2020, 3, e202000664. DOI: 10.26508/lsa.202000664 PMID: 32051255 | |
Buckley, B. J.; Majed, H.; Aboelela, A.; Minaei, E.; Jiang, L.; Fildes, K.; Cheung, C. Y.; Johnson, D.; Bachovchin, D.; Cook, G. M.; Huang, M.; Ranson, M.; Kelso, M. J. 6-Substituted amiloride derivatives as inhibitors of the urokinase-type plasminogen activator for use in metastatic disease. Bioorg. Med. Chem. Lett. 2019, 29, 126753. DOI: 10.1016/j.bmcl.2019.126753 PMID: 31679971 | |
Gai, K.; Okondo, M. C.; Rao, S. D.; Chui, A. J.; Ball, D. P.; Johnson, D. C.; Bachovchin, D. A. DPP8/9 inhibitors are universal activators of functional NLRP1 alleles. Cell Death. Dis. 2019, 10, 587. DOI: 10.1038/s41419-019-1817-5 PMID: 31383852 | |
Chui, A. J.†; Okondo, M. C.†; Rao, S. D.†; Gai, K.; Griswold, A. R.; Johnson, D. C.; Ball, D. P.; Taabazuing, C. Y.; Orth, E. L.; Vittimberga, B. A.; Bachovchin, D. A. N-terminal degradation activates the NLRP1B inflammasome. Science 2019, 364, 82–85. DOI: 10.1126/science.aau1208 PMID: 30872531 | |
Buckley, B. J.; Aboelela, A.; Minaei, E.; Jiang, L. X.; Xu, Z.; Ali, U.; Fildes, K.; Cheung, C. Y.; Cook, S. M.; Johnson, D. C.; Bachovchin, D. A.; Cook, G. M.; Apte, M.; Huang, M.; Ranson, M.; Kelso, M. J. 6-Substituted hexamethylene amiloride (HMA) derivatives as potent and selective inhibitors of the human urokinase plasminogen activator for use in cancer. J. Med. Chem. 2018, 61, 8299–8320. DOI: 10.1021/acs.jmedchem.8b00838 PMID: 30130401 | |
Johnson, D. C.†; Taabazuing, C. Y.†; Okondo, M. C.; Chui, A. J.; Rao, S. D.; Brown, F. C.; Reed, C.; Peguero, E.; de Stanchina, E.; Kentsis, A.; Bachovchin, D. A. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 2018, 24, 1151–1156. DOI: 10.1038/s41591-018-0082-y PMID: 29967349 | |
Shamay, Y.; Shah, J.; Işık, M.; Mizrachi, A.; Leibold, J.; Tschaharganeh, D. F.; Roxbury, D.; Budhathoki-Uprety, J.; Nawaly, K.; Sugarman, J. L.; Baut, E.; Neiman, M. R.; Dacek, M.; Ganesh, K. S.; Johnson, D. C.; Sridharan, R.; Chu, K. L.; Rajasekhar, V. K.; Lowe, S. W.; Chodera, J. D.; Heller, D. A. Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 2018, 17, 361–368. DOI: 10.1038/s41563-017-0007-z PMID: 29403054 | |
Okondo, M. C.†; Rao, S. D.†; Taabazuing, C. Y.; Chui, A. J.; Poplawski, S. E.; Johnson, D. C.; Bachovchin, D. A. Inhibition of Dpp8/9 activates the Nlrp1b inflammasome. Cell Chem. Biol. 2018, 25, 262–267. DOI: 10.1016/j.chembiol.2017.12.013 PMID: 29396289 | |
Goel, P.; Jumpertz, T.; Mikles, D. C.; Tichá, A.; Nguyen, M. T. N.; Verhelst, S.; Hubalek, M.; Johnson, D. C.; Bachovchin, D. A.; Ogorek, I.; Pietrzik, C. U.; Strisovsky, K.; Schmidt, B.; Weggen, S. Discovery and biological evaluation of potent and selective N-methylene saccharin-derived inhibitors for rhomboid intramembrane proteases. Biochemistry 2017, 56, 6713–6725. DOI: 10.1021/acs.biochem.7b01066 PMID: 29185711 | |
Tichá, A.; Stanchev, S.; Vinothkumar, K. R.; Mikles, D. C.; Pachl, P.; Began, J.; Škerle, J.; Švehlová, K.; Nguyen, M. T. N.; Verhelst, S. H. L.; Johnson, D. C.; Bachovchin, D. A.; Lepšík, M.; Majer, P.; Strisovsky, K. General and modular strategy for designing potent, selective, and pharmacologically compliant inhibitors of rhomboid proteases. Cell Chem. Biol. 2017, 24, 1523–1536. DOI: 10.1016/j.chembiol.2017.09.007 PMID: 29107700 | |
Okondo, M. C.; Johnson, D. C.; Sridharan, R.; Go, E. B.; Chui, A. J.; Wang, M. S.; Poplawski, S. E.; Wu, W.; Liu, Y.; Lai, J. H.; Sanford, D. G.; Arciprete, M. O.; Golub, T. R.; Bachovchin, W. W.; Bachovchin, D. A. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat. Chem. Biol. 2017, 13, 46–53. DOI: 10.1038/nchembio.2229 PMID: 27820798 | |
Johnson, Jeffrey | Johnson, J. G.; Wang, B.; Debelouchina, G. T.; Novick, R. P.; Muir, T. W. Increasing AIP macrocycle size reveals key features of agr activation in Staphylococcus aureus. ChemBioChem 2015, 16, 1093–1100. DOI: 10.1002/cbic.201500006 PMID: 25801678 |
Jones, Natalie | Jones, N. H.; Liu, Q.; Urnavicius, L.; Dahan, N. E.; Vostal, L. E.; Kapoor, T. M. Allosteric activation of VCP, an AAA unfoldase, by small molecule mimicry. Proc. Natl. Acad. Sci. U.S.A. 2024, 121, e2316892121. DOI: 10.1073/pnas.2316892121 PMID: 38833472 |
Jones, N. H.; Kapoor, T. M. Achieving the promise and avoiding the peril of chemical probes using genetics. Curr. Opin. Struct. Biol. 2023, 81, 102628. DOI: 10.1016/j.sbi.2023.102628 PMID: 37364429 | |
Cupido, T.†; Jones, N. H.†; Grasso, M. J.; Pisa, R.; Kapoor, T. M. A chemical genetics approach to examine the functions of AAA proteins. Nat. Struct. Mol. Biol. 2021, 28, 388–397. DOI: 10.1038/s41594-021-00575-9 PMID: 33782614 | |
Pisa, R.; Cupido, T.; Steinman, J. B.; Jones, N. H.; Kapoor, T. M. Analyzing resistance to design selective chemical inhibitors for AAA proteins. Cell Chem. Biol. 2019, 26, 1263–1273. DOI: 10.1016/j.chembiol.2019.06.001 PMID: 31257183 | |
Jordan, Victoria | Jordan, V. N.; Ordureau, A.; An, H. Identifying E3 ligase substrates with quantitative degradation proteomics. ChemBioChem 2023, 24, e202300108. DOI: 10.1002/cbic.202300108 PMID: 37166757 |
Kapoor, Neeraj | Gupta, R.; Kapoor, N.; Raleigh, D. P.; Sakmar, T. P. Nucleobindin 1 caps human islet amyloid polypeptide protofibrils to prevent amyloid fibril formation. J. Mol. Biol. 2012, 421, 378–389. DOI: 10.1016/j.jmb.2012.04.017 PMID: 22542527 |
Kapoor, N.; Gupta, R.; Menon, S. T.; Folta-Stogniew, E.; Raleigh, D. P.; Sakmar, T. P. Nucleobindin 1 is a calcium-regulated guanine nucleotide dissociation inhibitor of G{alpha}i1. J. Biol. Chem. 2010, 285, 31647–31660. DOI: 10.1074/jbc.M110.148429 PMID: 20679342 | |
Kapoor, N.; Menon, S. T.; Chauhan, R.; Sachdev, P.; Sakmar, T. P. Structural evidence for a sequential release mechanism for activation of heterotrimeric G proteins. J. Mol. Biol. 2009, 393, 882–897. DOI: 10.1016/j.jmb.2009.08.043 PMID: 19703466 | |
Karimov, Rashad | Bolaender, A.; Zatorska, D.; He, H.; Joshi, S.; Sharma, S.; Digwal, C. S.; Patel, H. J.; Sun, W.; Imber, B. S.; Ochiana, S. O.; Patel, M. R.; Shrestha, L.; Shah, S. K.; Wang, S.; Karimov, R.; Tao, H.; Patel, P. D.; Martin, A. R.; Yan, P.; Panchal, P.; Almodovar, J.; Corben, A.; Rimner, A.; Ginsberg, S. D.; Lyashchenko, S.; Burnazi, E.; Ku, A.; Kalidindi, T.; Lee, S. G.; Grkovski, M.; Beattie, B. J.; Zanzonico, P.; Lewis, J. S.; Larson, S.; Rodina, A.; Pillarsetty, N.; Tabar, V.; Dunphy, M. P.; Taldone, T.; Shimizu, F.; Chiosis, G. Chemical tools for epichaperome-mediated interactome dysfunctions of the central nervous system. Nat. Commun. 2021, 12, 4669. DOI: 10.1038/s41467-021-24821-2 PMID: 34344873 |
Karimov, R. R.*; Tan, D. S.*; Gin, D. Y. Synthesis of the hexacyclic triterpene core of the jujuboside saponins via tandem Wolff rearrangement–intramolecular ketene hetero-Diels–Alder reaction. Tetrahedron 2018, 74, 3370–3383. DOI: 10.1016/j.tet.2018.04.051 PMID: 30467444 | |
Karimov, R. R.*; Tan, D. S.*; Gin, D. Y. Rapid assembly of the doubly-branched pentasaccharide domain of the immunoadjuvant jujuboside A via convergent B(C6F5)3-catalyzed glycosylation of sterically-hindered precursors. Chem. Commun. (Camb.) 2017, 53, 5838–5841. DOI: 10.1039/c7cc01783a PMID: 28498382 | |
Pickett, J. E.; Váradi, A.; Palmer, T. C.; Grinnell, S. G.; Schrock, J. M.; Pasternak, G. W.; Karimov, R. R.; Majumdar, S. Mild, Pd-catalyzed stannylation of radioiodination targets. Bioorg. Med. Chem. Lett. 2015, 25, 1761–1764. DOI: 10.1016/j.bmcl.2015.02.055 PMID: 25777268 | |
Keppetipola, Niroshika | Keppetipola, N.; Jain, R.; Meineke, B.; Diver, M.; Shuman, S. Structure-activity relationships in Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA 2009, 15, 1036–1044. DOI: 10.1261/rna.1637809 PMID: 19383764 |
Keppetipola, N.; Shuman, S. A phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2´,3´-cyclic nucleotide phosphodiesterase activity. J. Biol. Chem. 2008, 283, 30942–30949. DOI: 10.1074/jbc.M805064200 PMID: 18757371 | |
Keppetipola, N.; Shuman, S. Characterization of the 2´,3´ cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage lambda phosphatase. Nucleic Acids Res. 2008, 35, 7721–7732. DOI: 10.1093/nar/gkm868 PMID: 17986465 | |
Keppetipola, N.; Nandakumar, J.; Shuman, S. Reprogramming the tRNA-splicing activity of a bacterial RNA repair enzyme. Nucleic Acids Res. 2007, 35, 3624–3630. DOI: 10.1093/nar/gkm110 PMID: 17488852 | |
Keppetipola, N.; Jain, R.; Shuman, S. Novel triphosphate phosphohydrolase activity of Clostridium thermocellum TTM, a member of the triphosphate tunnel metalloenzyme superfamily. J. Biol. Chem. 2007, 282, 11941–11949. DOI: 10.1074/jbc.M611328200 PMID: 17303560 | |
Keppetipola, N.; Shuman, S. Distinct enzymic functional groups are required for the phosphomonoesterase and phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase/phosphatase. J. Biol. Chem. 2006, 281, 19251–19259. DOI: 10.1074/jbc.M602549200 PMID: 16675457 | |
Keppetipola, N.; Shuman, S. Mechanism of the phosphatase component of Clostridium thermocellum polynucleotide kinase-phosphatase. RNA 2005, 12, 73–82. DOI: 10.1261/rna.2196406 PMID: 16301605 | |
Keppetipola, N.; Shuman, S. Characterization of a thermophilic ATP-dependent DNA ligase from the euryarchaeon Pyrococcus horikoshii. J. Bacteriol. 2005, 187, 6902–6908. DOI: 10.1128/JB.187.20.6902-6908.2005 PMID: 16199559 | |
King, Heather | King, H. A.; Hoelz, A.; Crane, B. R.; Young, M. W. Structure of an enclosed dimer formed by the Drosophila period protein. J. Mol. Biol. 2011, 413, 561–572. DOI: 10.1016/j.jmb.2011.08.048 PMID: 21907720 |
King, Ryan | Bauer, J. D.; King, R. W.; Brady, S. F. Utahmycins A and B, azaquinones produced by an environmental DNA clone. J. Nat. Prod. 2010, 73, 976–979. DOI: 10.1021/np900786s PMID: 20387794 |
King, R. W.; Bauer, J. D.; Brady, S. F. An environmental DNA-derived type II polyketide biosynthetic pathway encodes the biosynthesis of the pentacyclic polyketide erdacin. Angew. Chem. Int. Ed. Engl. 2009, 48, 6257–6261. DOI: 10.1002/anie.200901209 PMID: 19621341 | |
Kobašlija, Muris |
Poe, S. L.; Kobašlija, M.; McQuade, D. T. Mechanism and application of a microcapsule enabled multicatalyst reaction. J. Am. Chem. Soc. 2007, 129, 9216–9221. DOI: 10.1021/ja071706x PMID: 17602626 |
Poe, S. L.; Kobašlija, M.; McQuade, D. T. Microcapsule enabled multicatalyst system. J. Am. Chem. Soc. 2006, 128, 15586–15587. DOI: 10.1021/ja066476l PMID: 17147357 | |
Kobašlija, M.; McQuade, D. T. Removable colored coatings based on calcium alginate hydrogels. Biomacromolecules 2006, 7, 2357–2361. DOI: 10.1021/bm060341q PMID: 16903682 | |
Kobašlija, M.; McQuade, D. T. Polyurea microcapsules from oil-in-oil emulsions via interfacial polymerization. Macromolecules 2006, 39, 6371–6375. DOI: 10.1021/ma061455x | |
Broadwater, S. J.; Roth, S. L.; Price, K. E.; Kobašlija, M.; McQuade, D. T. One-pot multi-step synthesis: a challenge spawning innovation. Org. Biomol. Chem. 2005, 3, 2899–2906. DOI: 10.1039/B506621M PMID: 16186917 | |
Eliezer, D.; Barré, P.; Kobašlija, M.; Chan, D.; Li, X.; Heend, L. Residual structure in the repeat domain of tau: echoes of microtubule binding and paired helical filament formation. Biochemistry 2005, 44, 1026–1036. DOI: 10.1021/bi048953n PMID: 15654759 | |
Kolodzinski, Arielle | Mattheisen, J. M.†; Rasmussen, V. A.†; Ceraudo, E.; Kolodzinski, A.; Horioka-Duplix, M.; Sakmar, T. P.; Huber, T. Application of bioluminescence resonance energy transfer to quantitate cell-surface expression of membrane proteins. Anal. Biochem. 2024, 684, 115361. DOI: 10.1016/j.ab.2023.115361 PMID: 37865268 |
Kotliar, Ilana | Kotliar, I. B.; Bendes, A.; Dahl, L.; Chen, Y.; Saarinen, M.; Ceraudo, E.; Dodig-Crnković, T.; Uhlén, M.; Svenningsson, P.; Schwenk, J. M.; Sakmar, T. P. Multiplexed mapping of the interactome of GPCRs with receptor activity-modifying proteins. Sci. Adv. 2024, 10, eado9959. DOI: 10.1126/sciadv.ado9959 PMID: 39083597 |
Kotliar, I. B.* Proteomics update and perspectives from the Proteomics in Cell Biology and Disease Mechanisms Conference. ChemBioChem 2023, 24, e202200626. DOI: 10.1002/cbic.202200626 PMID: 36703596 | |
Dahl, L.†; Kotliar, I. B.†; Bendes, A.; Dodig-Crnković, T.; Fromm, S.; Elofsson, A.; Uhlén, M.; Sakmar, T. P.; Schwenk, J. M. Multiplexed selectivity screening of anti-GPCR antibodies. Sci. Adv. 2023, 9, eadf9297. DOI: 10.1126/sciadv.adf9297 PMID: 37134173 | |
Kotliar, I. B.; Ceraudo, E.; Kemelmakher-Liben, K.; Oren, D. A.; Lorenzen, E.; Dodig-Crnković, T.; Horioka-Duplix, M.; Huber, T.; Schwenk, J. M.; Sakmar, T. P. Itch receptor MRGPRX4 interacts with the receptor activity-modifying proteins. J. Biol. Chem. 2023, 299, 104664. DOI: 10.1016/j.jbc.2023.104664 PMID: 37003505 | |
Kotliar, I. B.; Lorenzen, E.; Schwenk, J. M.; Hay, D. L.; Sakmar, T. P. Elucidating the interactome of G protein-coupled receptors and receptor activity-modifying proteins. Pharmacol. Rev. 2023, 75, 1–34. DOI: 10.1124/pharmrev.120.000180 PMID: 36757898 | |
Ball, D. P.; Taabazuing, C. Y.; Griswold, A. R.; Orth, E. L.; Rao, S. D.; Kotliar, I. B.; Vostal, L. E.; Johnson, D. C.; Bachovchin, D. A. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci. Alliance 2020, 3, e202000664. DOI: 10.26508/lsa.202000664 PMID: 32051255 | |
Lorenzen, E.; Dodig-Crnković, T.; Kotliar, I. B.; Pin, E.; Ceraudo, E.; Vaughan, R. D.; Uhlèn, M.; Huber, T.; Schwenk, J. M.; Sakmar, T. P. Multiplexed analysis of the secretin-like GPCR-RAMP interactome. Sci. Adv. 2019, 5, eaaw2778. DOI: 10.1126/sciadv.aaw2778 PMID: 31555726 | |
Lee, Adrian | Hoelz, A.; Janz, J. M.; Lawrie, S. D.; Corwin, B.; Lee, A.; Sakmar, T. P. Crystal structure of the SH3 domain of betaPIX in complex with a high affinity peptide from PAK2. J. Mol. Biol. 2006, 358, 509–522. DOI: 10.1016/j.jmb.2006.02.027 PMID: 16527308 |
Martin, O. J.; Lee, A.; McGraw, T. E. GLUT4 distribution between the plasma membrane and the intracellular compartments is maintained by an insulin-modulated bipartite dynamic mechanism. J. Biol. Chem. 2006, 281, 484–490. DOI: 10.1074/jbc.M505944200 PMID: 16269413 | |
Eguez, L.; Lee, A.; Chavez, J. A.; Miinea, C. P.; Kane, S.; Lienhard, G. E.; McGraw, T. E. Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metab. 2005, 2, 263–272. DOI: 10.1016/j.cmet.2005.09.005 PMID: 16213228 | |
Lee, Jonghan Peter | Lee, J. P.; Corless, B. C.; Gardner, T. J.; Scheinberg, D. A.; Tan, D. S. Development of a p-hydroxybenzyl-alcohol-linked glutamate prodrug for activation by Pseudomonas carboxypeptidase G2. Org. Lett. 2023, 25, 6295–6299. DOI: 10.1021/acs.orglett.3c02130 PMID: 37602700 |
Gardner, T. J.†; Lee, J. P.†; Bourne, C. M.; Wijewarnasuriya, D.; Kinarivala, N.; Kurtz, K. G.; Corless, B. C.; Dacek, M. M.; Chang, A. Y.; Mo, G.; Nguyen, K. M.; Brentjens, R. J.; Tan, D. S.; Scheinberg, D. A. Engineering CAR-T cells to activate small-molecule drugs in situ. Nat. Chem. Biol. 2022, 18, 216–225. DOI: 10.1038/s41589-021-00932-1 PMID: 34969970 | |
Cai, X. C.; Zhang, T.; Kim, E. J.; Jiang, M.; Wang, K.; Wang, J.; Chen, S.; Zhang, N.; Wu, H.; Li, F.; Dela Seña, C. C.; Zeng, H.; Vivcharuk, V.; Niu, X.; Zheng, W.; Lee, J. P.; Chen, Y.; Barsyte, D.; Szewczyk, M.; Hajian, T.; Ibáñez, G.; Dong, A.; Dombrovski, L.; Zhang, Z.; Deng, H.; Min, J.; Arrowsmith, C. H.; Mazutis, L.; Shi, L.; Vedadi, M.; Brown, P. J.; Xiang, J.; Qin, L. X.; Xu, W.; Luo, M. A chemical probe of CARM1 alters epigenetic plasticity against breast cancer cell invasion. eLife 2019, 8, e47110. DOI: 10.7554/eLife.47110 PMID: 31657716 | |
Leicher, Rachel | Leicher, R.; Liu, S. Probing the interaction between chromatin and chromatin-associated complexes with optical tweezers. Methods Mol. Biol. 2022, 2478, 313–327. DOI: 10.1007/978-1-0716-2229-2_11 PMID: 36063325 |
Leicher, R.†; Osunsade, A.†; Chua, G. N. L.†; Faulkner, S. C.†; Latham, A. P.; Watters, J. W.; Nguyen, T.; Beckwitt, E. C.; Christodoulou-Rubalcava, S.; Young, P. G.; Zhang, B.; David, Y.; Liu, S. Single-stranded nucleic acid binding and coacervation by linker histone H1. Nat. Struct. Mol. Biol. 2022, 29, 463–471. DOI: 10.1038/s41594-022-00760-4 PMID: 35484234 | |
Lin, X.; Leicher, R.; Liu, S.; Zhang, B. Cooperative DNA looping by PRC2 complexes. Nucleic Acids Res. 2021, 49, 6238–6248. DOI: 10.1093/nar/gkab441 PMID: 34057467 | |
Leicher, R.; Ge, E. J.; Lin, X.; Reynolds, M. J.; Xie, W.; Walz, T.; Zhang, B.; Muir, T. W.; Liu, S. Single-molecule and in silico dissection of the interaction between Polycomb repressive complex 2 and chromatin. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 30465–30475. DOI: 10.1073/pnas.2003395117 PMID: 33208532 | |
Mei, L.; Espinosa de Los Reyes, S.; Reynolds, M. J.; Leicher, R.; Liu, S.; Alushin, G. M. Molecular mechanism for direct actin force-sensing by α-catenin. eLife 2020, 9, e62514. DOI: 10.7554/eLife.62514 PMID: 32969337 | |
Zheng, Q.; Omans, N. D.; Leicher, R.; Osunsade, A.; Agustinus, A. S.; Finkin-Groner, E.; D’Ambrosio, H.; Liu, B.; Chandarlapaty, S.; Liu, S.; David, Y. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nat. Commun. 2019, 10, 1289. DOI: 10.1038/s41467-019-09192-z PMID: 30894531 | |
Williams, R. M.; Lee, C.; Galassi, T. V.; Harvey, J. D.; Leicher, R.; Sirenko, M.; Dorso, M. A.; Shah, J.; Olvera, N.; Dao, F.; Levine, D. A.; Heller, D. A. Noninvasive ovarian cancer biomarker detection via an optical nanosensor implant. Sci. Adv. 2018, 4, eaaq1090. DOI: 10.1126/sciadv.aaq1090 PMID: 29675469 | |
Lemmon, Abigail | Lee, H. G.; Lemmon, A. A.; Lima, C. D. SUMO enhances unfolding of SUMO-polyubiquitin-modified substrates by the Ufd1/Npl4/Cdc48 complex. Proc. Natl. Acad. Sci. USA 2023, 120, e2213703120. DOI: 10.1073/pnas.2213703120 PMID: 36574706 |
Levinson, Adam | Levinson, A. M.; McGee, J. H.; Roberts, A. G.; Creech, G. S.; Wang, T.; Peterson, M. T.; Hendrickson, R. C.; Verdine, G. L.; Danishefsky, S. J. Total chemical synthesis and folding of all-L and all-D variants of oncogenic KRas(G12V). J. Am. Chem. Soc. 2017, 139, 7632–7639. DOI: 10.1021/jacs.7b02988 PMID: 28448128 |
Levinson, A. M.* Total synthesis of aspeverin via an iodine(III)-mediated oxidative cyclization. Org. Lett. 2014, 16, 4904–4907. DOI: 10.1021/ol5024163 PMID: 25171639 | |
Lin, Karl Matthew | Poulton, N. C.; DeJesus, M. A.; Munsamy-Govender, V.; Kanai, M.; Roberts, C. G.; Azadian, Z. A.; Bosch, B.; Lin, K. M.; Li, S.; Rock, J. M. Beyond antibiotic resistance: The whiB7 transcription factor coordinates an adaptive response to alanine starvation in mycobacteria. Cell Chem. Biol. 2024, 31, 669–682. DOI: 10.1016/j.chembiol.2023.12.020 PMID: 38266648 |
Litke, Jacob | Litke, J. L.; Jaffrey, S. R. Designing and expressing circular RNA aptamers to regulate mammalian cell biology. Methods Mol. Biol. 2023, 2570, 223–234. DOI: 10.1007/978-1-0716-2695-5_17 PMID: 36156786 |
Litke, J. L.; Jaffrey, S. R. Trans ligation of RNAs to generate hybrid circular RNAs using highly efficient autocatalytic transcripts. Methods 2021, 196, 104–112. DOI: 10.1016/j.ymeth.2021.05.009 PMID: 33992775 | |
Moon, J. D.; Wu, J.; Dey, S. K.; Litke, J. L.; Li, X.; Kim, H.; Jaffrey, S. R. Naturally occurring three-way junctions can be repurposed as genetically encoded RNA-based sensors. Cell. Chem. Biol 2021, 28, 1569-1580.e4. DOI: 10.1016/j.chembiol.2021.04.022 PMID: 34010626 | |
Li, X.; Mo, L.; Litke, J. L.; Dey, S. K.; Suter, S. R.; Jaffrey, S. R. Imaging intracellular S-adenosyl methionine dynamics in live mammalian cells with a genetically encoded red fluorescent RNA-based sensor. J. Am. Chem. Soc. 2020, 142, 14117–14124. DOI: 10.1021/jacs.0c02931 PMID: 32698574 | |
Li, X.; Kim, H.; Litke, J. L.; Wu, J.; Jaffrey, S. R. Fluorophore-promoted RNA folding and photostability enables imaging of single Broccoli-tagged mRNAs in live mammalian cells. Angew. Chem. Int. Ed. Engl. 2020, 59, 4511–4518. DOI: 10.1002/anie.201914576 PMID: 31850609 | |
Litke, J. L.; Jaffrey, S. R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat. Biotechnol. 2019, 37, 667–675. DOI: 10.1038/s41587-019-0090-6 PMID: 30962542 | |
You, M.; Litke, J. L.; Wu, R.; Jaffrey, S. R. Detection of low-abundance metabolites in live cells using an RNA integrator. Cell Chem. Biol. 2019, 26, 471–481. DOI: 10.1016/j.chembiol.2019.01.005 PMID: 30773480 | |
Litke, J. L.; You, M.; Jaffrey, S. R. Developing fluorogenic riboswitches for imaging metabolite concentration dynamics in bacterial cells. Meth. Enzymol. 2016, 572, 315–333. DOI: 10.1016/bs.mie.2016.03.021 PMID: 27241761 | |
You, M.†; Litke, J. L.†; Jaffrey, S. R. Imaging metabolite dynamics in living cells using a Spinach-based riboswitch. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, E2756–E2765. DOI: 10.1073/pnas.1504354112 PMID: 25964329 | |
Liu, Fangyu | Liu, F.; Kaplan, A. L.; Levring, J.; Einsiedel, J.; Tiedt, S.; Distler, K.; Omattage, N. S.; Kondratov, I. S.; Moroz, Y. S.; Pietz, H. L.; Irwin, J. J.; Gmeiner, P.; Shoichet, B. K.; Chen, J. Structure-based discovery of CFTR potentiators and inhibitors. Cell 2024, 187, 3712-3725. DOI: 10.1016/j.cell.2024.04.046 PMID: 38810646 |
Liu, F.; Lee, J.; Chen, J. Molecular structures of the eukaryotic retinal importer ABCA4. eLife 2021, 10, e63524. DOI: 10.7554/eLife.63524 PMID: 33605212 | |
Liu, F.†; Zhang, Z.†; Levit, A.; Levring, J.; Touhara, K. K.; Shoichet, B. K.; Chen, J. Structural identification of a hotspot on CFTR for potentiation. Science 2019, 364, 1184–1188. DOI: 10.1126/science.aaw7611 PMID: 31221859 | |
Zhang, Z.†; Liu, F.†; Chen, J. Molecular structure of the ATP-bound, phosphorylated human CFTR. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 12757–12762. DOI: 10.1073/pnas.1815287115 PMID: 30459277 | |
Zhang, Z.; Liu, F.; Chen, J. Conformational changes of CFTR upon phosphorylation and ATP binding. Cell 2017, 170, 483–491. DOI: 10.1016/j.cell.2017.06.041 PMID: 28735752 | |
Liu, F.; Zhang, Z.; Csanády, L.; Gadsby, D. C.; Chen, J. Molecular structure of the human CFTR ion channel. Cell 2017, 169, 85–95. DOI: 10.1016/j.cell.2017.02.024 PMID: 28340353 | |
Lu, Alvin | Taldone, T.; Kang, Y.; Patel, H. J.; Patel, M. R.; Patel, P. D.; Rodina, A.; Patel, Y.; Gozman, A.; Maharaj, R.; Clement, C. C.; Lu, A.; Young, J. C.; Chiosis, G. Heat shock protein 70 inhibitors. 2. 2,5′-Thiodipyrimidines, 5-(phenylthio)pyrimidines, 2-(pyridin-3-ylthio)pyrimidines, and 3-(phenylthio)pyridines as reversible binders to an allosteric site on heat shock protein 70. J. Med. Chem. 2014, 57, 1208–1224. DOI: 10.1021/jm401552y PMID: 24548239 |
Lu, Sydney | Lu, S. X.; Kappel, L. W.; Charbonneau-Allard, A. M.; Atallah, R.; Holland, A. M.; Turbide, C.; Hubbard, V. M.; Rotolo, J. A.; Smith, M.; Suh, D.; King, C.; Rao, U. K.; Yim, N.; Bautista, J. L.; Jenq, R. R.; Penack, O.; Na, I. K.; Liu, C.; Murphy, G.; Alpdogan, O.; Blumberg, R. S.; Macian, F.; Holmes, K. V.; Beauchemin, N.; van den Brink, M. R. Ceacam1 separates graft-versus-host-disease from graft-versus-tumor activity after experimental allogeneic bone marrow transplantation. PLoS ONE 2011, 6, e21611. DOI: 10.1371/journal.pone.0021611 PMID: 21760897 |
Lu, S. X.; Holland, A. M.; Na, I. K.; Terwey, T. H.; Alpdogan, O.; Bautista, J. L.; Smith, O. M.; Suh, D.; King, C.; Kochman, A.; Hubbard, V. M.; Rao, U. K.; Yim, N.; Liu, C.; Laga, A. C.; Murphy, G.; Jenq, R. R.; Zakrzewski, J. L.; Penack, O.; Dykstra, L.; Bampoe, K.; Perez, L.; Furie, B.; Furie, B.; van den Brink, M. R. Absence of P-selectin in recipients of allogeneic bone marrow transplantation ameliorates experimental graft-versus-host disease. J. Immunol. 2010, 185, 1912–1919. DOI: 10.4049/jimmunol.0903148 PMID: 20622117 | |
Penack, O.; Henke, E.; Suh, D.; King, C. G.; Smith, O. M.; Na, I. K.; Holland, A. M.; Ghosh, A.; Lu, S. X.; Jenq, R. R.; Liu, C.; Murphy, G. F.; Lu, T. T.; May, C.; Scheinberg, D. A.; Gao, D. C.; Mittal, V.; Heller, G.; Benezra, R.; van den Brink, M. R. Inhibition of neovascularization to simultaneously ameliorate graft-vs-host disease and decrease tumor growth. J. Natl. Cancer Inst. 2010, 102, 894–908. DOI: 10.1093/jnci/djq172 PMID: 20463307 | |
Na, I. K.; Lu, S. X.; Yim, N. L.; Goldberg, G. L.; Tsai, J.; Rao, U.; Smith, O. M.; King, C. G.; Suh, D.; Hirschhorn-Cymerman, D.; Palomba, L.; Penack, O.; Holland, A. M.; Jenq, R. R.; Ghosh, A.; Tran, H.; Merghoub, T.; Liu, C.; Sempowski, G. D.; Ventevogel, M.; Beauchemin, N.; van den Brink, M. R. The cytolytic molecules Fas ligand and TRAIL are required for murine thymic graft-versus-host disease. J. Clin. Invest. 2010, 120, 343–356. DOI: 10.1172/JCI39395 PMID: 19955659 | |
van den Brink, M. R.; Porter, D. L.; Giralt, S.; Lu, S. X.; Jenq, R. R.; Hanash, A.; Bishop, M. R. Relapse after allogeneic hematopoietic cell therapy. Biol. Blood Marrow Transplant. 2010, 16, S138–S145. DOI: 10.1016/j.bbmt.2009.10.023 PMID: 19857588 | |
Penack, O.; Smith, O. M.; Cunningham-Bussel, A.; Liu, X.; Rao, U.; Yim, N.; Na, I. K.; Holland, A. M.; Ghosh, A.; Lu, S. X.; Jenq, R. R.; Liu, C.; Murphy, G. F.; Brandl, K.; van den Brink, M. R. NOD2 regulates hematopoietic cell function during graft-versus-host disease. J. Exp. Med. 2009, 206, 2101–2110. DOI: 10.1084/jem.20090623 PMID: 19737867 | |
Rotolo, J. A.; Stancevic, B.; Lu, S. X.; Zhang, J.; Suh, D.; King, C. G.; Kappel, L. W.; Murphy, G. F.; Liu, C.; Fuks, Z.; van den Brink, M. R.; Kolesnick, R. Cytolytic T cells induce ceramide-rich platforms in target cell membranes to initiate graft-versus-host disease. Blood 2009, 114, 3693–3706. DOI: 10.1182/blood-2008-11-191148 PMID: 19666872 | |
Jenq, R. R.; King, C. G.; Volk, C.; Suh, D.; Smith, O. M.; Rao, U. K.; Yim, N. L.; Holland, A. M.; Lu, S. X.; Zakrzewski, J. L.; Goldberg, G. L.; Diab, A.; Alpdogan, O.; Penack, O.; Na, I. K.; Kappel, L. W.; Wolchok, J. D.; Houghton, A. N.; Perales, M. A.; van den Brink, M. R. Keratinocyte growth factor enhances DNA plasmid tumor vaccine responses after murine allogeneic bone marrow transplantation. Blood 2009, 113, 1574–1580. DOI: 10.1182/blood-2008-05-155697 PMID: 19011222 | |
Lu, S. X.; Alpdogan, O.; Lin, J.; Balderas, R.; Campos-Gonzalez, R.; Wang, X.; Gao, G. J.; Suh, D.; King, C.; Chow, M.; Smith, O. M.; Hubbard, V. M.; Bautista, J. L.; Cabrera-Perez, J.; Zakrzewski, J. L.; Kochman, A. A.; Chow, A.; Altan-Bonnet, G.; van den Brink, M. R. STAT-3 and ERK 1/2 phosphorylation are critical for T-cell alloactivation and graft-versus-host disease. Blood 2008, 112, 5254–5258. DOI: 10.1182/blood-2008-03-147322 PMID: 18838616 | |
Alpdogan, S. O.; Lu, S. X.; Patel, N.; McGoldrick, S.; Suh, D.; Budak-Alpdogan, T.; Smith, O. M.; Grubin, J.; King, C.; Goldberg, G. L.; Hubbard, V. M.; Kochman, A. A.; van den Brink, M. R. Rapidly proliferating CD44hi peripheral T cells undergo apoptosis and delay posttransplantation T-cell reconstitution after allogeneic bone marrow transplantation. Blood 2008, 112, 4755–4764. DOI: 10.1182/blood-2008-02-142737 PMID: 18815289 | |
Zakrzewski, J. L.; Suh, D.; Markley, J. C.; Smith, O. M.; King, C.; Goldberg, G. L.; Jenq, R.; Holland, A. M.; Grubin, J.; Cabrera-Perez, J.; Brentjens, R. J.; Lu, S. X.; Rizzuto, G.; Sant’Angelo, D. B.; Riviere, I.; Sadelain, M.; Heller, G.; Zúñiga-Pflücker, J. C.; Lu, C.; van den Brink, M. R. Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors. Nat. Biotechnol. 2008, 26, 453–461. DOI: 10.1038/nbt1395 PMID: 18376399 | |
Ramirez-Montagut, T.; Chow, A.; Kochman, A. A.; Smith, O. M.; Suh, D.; Sindhi, H.; Lu, S.; Borsotti, C.; Grubin, J.; Patel, N.; Terwey, T. H.; Kim, T. D.; Heller, G.; Murphy, G. F.; Liu, C.; Alpdogan, O.; van den Brink, M. R. IFN-γ and Fas ligand are required for graft-versus-tumor activity against renal cell carcinoma in the absence of lethal graft-versus-host disease. J. Immunol. 2007, 179, 1669–1680. PMID: 17641033 | |
Borsotti, C.; Franklin, A. R.; Lu, S. X.; Kim, T. D.; Smith, O. M.; Suh, D.; King, C. G.; Chow, A.; Liu, C.; Alpdogan, O.; van den Brink, M. R. Absence of donor T-cell-derived soluble TNF decreases graft-versus-host disease without impairing graft-versus-tumor activity. Blood 2007, 110, 783–786. DOI: 10.1182/blood-2006-10-054510 PMID: 17395784 | |
Zakrzewski, J. L.; Kochman, A. A.; Lu, S. X.; Terwey, T. H.; Kim, T. D.; Hubbard, V. M.; Muriglan, S. J.; Suh, D.; Smith, O. M.; Grubin, J.; Patel, N.; Chow, A.; Cabrera-Perez, J.; Radhakrishnan, R.; Diab, A.; Perales, M. A.; Rizzuto, G.; Menet, E.; Pamer, E. G.; Heller, G.; Zúñiga-Pflücker, J. C.; Alpdogan, O.; van den Brink, M. R. Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nat. Med. 2006, 12, 1039–1047. DOI: 10.1038/nm1463 PMID: 16936725 | |
Ramirez-Montagut, T.; Chow, A.; Hirschhorn-Cymerman, D.; Terwey, T. H.; Kochman, A. A.; Lu, S.; Miles, R. C.; Sakaguchi, S.; Houghton, A. N.; van den Brink, M. R. Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity. J. Immunol. 2006, 176, 6434–6442. PMID: 16709800 | |
Alpdogan, O.; Hubbard, V. M.; Smith, O. M.; Patel, N.; Lu, S.; Goldberg, G. L.; Gray, D. H.; Feinman, J.; Kochman, A. A.; Eng, J. M.; Suh, D.; Muriglan, S. J.; Boyd, R. L.; van den Brink, M. R. Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood 2006, 107, 2453–2460. DOI: 10.1182/blood-2005-07-2831 PMID: 16304055 | |
Waldman, E.; Lu, S. X.; Hubbard, V. M.; Kochman, A. A.; Eng, J. M.; Terwey, T. H.; Muriglan, S. J.; Kim, T. D.; Heller, G.; Murphy, G. F.; Liu, C.; Alpdogan, O.; van den Brink, M. R. Absence of β7 integrin results in less graft-versus-host disease because of decreased homing of alloreactive T cells to intestine. Blood 2006, 107, 1703–1711. DOI: 10.1182/blood-2005-08-3445 PMID: 16291587 | |
Terwey, T. H.; Kim, T. D.; Kochman, A. A.; Hubbard, V. M.; Lu, S.; Zakrzewski, J. L.; Ramirez-Montagut, T.; Eng, J. M.; Muriglan, S. J.; Heller, G.; Murphy, G. F.; Liu, C.; Budak-Alpdogan, T.; Alpdogan, O.; van den Brink, M. R. CCR2 is required for CD8-induced graft-versus-host disease. Blood 2005, 106, 3322–3330. DOI: 10.1182/blood-2005-05-1860 PMID: 16037386 | |
Lux, Michaelyn | Kochańczyk, T.; Hann, Z. S.; Lux, M. C.; Delos Reyes, A. M. V.; Ji, C.; Tan, D. S.; Lima, C. D. Structural basis for transthiolation intermediates in the ubiquitin pathway. Nature 2024, 633, 216–223. DOI: 10.1038/s41586-024-07828-9 PMID: 39143218 |
Delos Reyes, A. M. V.†; Lux, M. C.†; Hann, Z. S.†; Ji, C.; Kochańczyk, T.; DiBello, M.; Lima, C. D.; Tan, D. S. Design and semisynthesis of biselectrophile-functionalized ubiquitin probes to investigate transthioesterification reactions. Org. Lett. 2024, 26, 4594–4599. DOI: 10.1021/acs.orglett.4c01102 PMID: 38781175 | |
Hann, Z. S.; Ji, C.; Olsen, S. K.; Lu, X.; Lux, M. C.; Tan, D. S.; Lima, C. D. Structural basis for adenylation and thioester bond formation in the ubiquitin E1. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 15475–15484. DOI: 10.1073/pnas.1905488116 PMID: 31235585 | |
Lux, M. C.; Boby, M. L.; Brooks, J. L.; Tan, D. S. Synthesis of bicyclic ethers by a palladium-catalyzed oxidative cyclization-redox relay-π-allyl-Pd cyclization cascade reaction. Chem. Commun. 2019, 55, 7013–7016. DOI: 10.1039/c9cc03775f PMID: 31147660 | |
Lux, M. C.; Standke, L. C.; Tan, D. S. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J. Antibiot. 2019, 72, 325–349. DOI: 10.1038/s41429-019-0171-2 PMID: 30982830 | |
Maksimovic, Igor | Ray, D. M.; Jennings, E. Q.; Maksimovic, I.; Chai, X.; Galligan, J. J.; David, Y.; Zheng, Q. Chemical labeling and enrichment of histone glyoxal adducts. ACS. Chem. Biol. 2022, 17, 756–761. DOI: 10.1021/acschembio.1c00864 PMID: 35294181 |
Maksimovic, I.; Finkin-Groner, E.; Fukase, Y.; Zheng, Q.; Sun, S.; Michino, M.; Huggins, D. J.; Myers, R. W.; David, Y. Deglycase-activity oriented screening to identify DJ-1 inhibitors. RSC Med. Chem. 2021, 12, 1232–1238. DOI: 10.1039/d1md00062d PMID: 34355187 | |
Faulkner, S.; Maksimovic, I.; David, Y. A chemical field guide to histone nonenzymatic modifications. Curr. Opin. Chem. Biol. 2021, 63, 180–187. DOI: 10.1016/j.cbpa.2021.05.002 PMID: 34157651 | |
Maksimovic, I.; David, Y. Non-enzymatic covalent modifications as a new chapter in the histone code. Trends Biochem. Sci. 2021, 46, 718–730. DOI: 10.1016/j.tibs.2021.04.004 PMID: 33965314 | |
Maksimovic, I.; Zheng, Q.; Trujillo, M. N.; Galligan, J. J.; David, Y. An azidoribose probe to track ketoamine adducts in histone ribose glycation. J. Am. Chem. Soc. 2020, 142, 9999–10007. DOI: 10.1021/jacs.0c01325 PMID: 32390412 | |
Zheng, Q.; Maksimovic, I.; Upad, A.; David, Y. Non-enzymatic covalent modifications: A new link between metabolism and epigenetics. Protein Cell 2020, 11, 401–416. DOI: 10.1007/s13238-020-00722-w PMID: 32356279 | |
Zheng, Q.†; Maksimovic, I.†; Upad, A.; Guber, D.; David, Y. Synthesis of an alkynyl methylglyoxal probe to investigate nonenzymatic histone glycation. J. Org. Chem. 2020, 85, 1691–1697. DOI: 10.1021/acs.joc.9b02504 PMID: 31875401 | |
Maksimovic, I.; Ray, D.; Zheng, Q.; David, Y. Utilizing intein trans-splicing for in vivo generation of site-specifically modified proteins. Meth. Enzymol. 2019, 626, 203–222. DOI: 10.1016/bs.mie.2019.07.015 PMID: 31606075 | |
Zheng, Q.; Prescott, N. A.; Maksimovic, I.; David, Y. (De)toxifying the epigenetic code. Chem. Res. Toxicol. 2019, 32, 796–807. DOI: 10.1021/acs.chemrestox.9b00013 PMID: 30839196 | |
Mattheisen, Jordan | Kazmi, M. A.; Thaler, D. S.; Åberg, K. C.; Mattheisen, J. M.; Huber, T.; Sakmar, T. P. The Coronavirus Calendar (CoronaCal): A simplified SARS-CoV-2 test system for sampling and retrospective analysis. Front. Epidemiol. 2023, 3, 1146006. DOI: 10.3389/fepid.2023.1146006 PMID: 38455914 |
Mattheisen, J. M.†; Rasmussen, V. A.†; Ceraudo, E.; Kolodzinski, A.; Horioka-Duplix, M.; Sakmar, T. P.; Huber, T. Application of bioluminescence resonance energy transfer to quantitate cell-surface expression of membrane proteins. Anal. Biochem. 2024, 684, 115361. DOI: 10.1016/j.ab.2023.115361 PMID: 37865268 | |
Mattheisen, J. M.; Limberakis, C.; Ruggeri, R. B.; Dowling, M. S.; Am Ende, C. W.; Ceraudo, E.; Huber, T.; McClendon, C. L.; Sakmar, T. P. Bioorthogonal tethering enhances drug fragment affinity for G protein-coupled receptors in live cells. J. Am. Chem. Soc. 2023, 145, 11173–11184. DOI: 10.1021/jacs.3c00972 PMID: 37116188 | |
Mattheisen, J. M.; Wollowitz, J. S.; Huber, T.; Sakmar, T. P. Genetic code expansion to enable site-specific bioorthogonal labeling of functional G protein-coupled receptors in live cells. Protein Sci. 2023, 32, e4550. DOI: 10.1002/pro.4550 PMID: 36540928 | |
Ceraudo, E.†; Horioka, M.†; Mattheisen, J. M.; Hitchman, T. D.; Moore, A. R.; Kazmi, M. A.; Chi, P.; Chen, Y.; Sakmar, T. P.; Huber, T. Direct evidence that the GPCR CysLTR2 mutant causative of uveal melanoma is constitutively active with highly biased signaling. J. Biol. Chem. 2021, 296, 100163. DOI: 10.1074/jbc.RA120.015352 PMID: 33288675 | |
McBrayer, Mary Kate | Zeigerer, A.; McBrayer, M. K.; McGraw, T. E. Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160. Mol. Biol. Cell 2004, 15, 4406–4415. DOI: 10.1091/mbc.E04-04-0333 PMID: 15254270 |
Mei, Lin | Mei, L.; Reynolds, M. J.; Garbett, D.; Gong, R.; Meyer, T.; Alushin, G. M. Structural mechanism for bidirectional actin cross-linking by T-plastin. Proc. Natl. Acad. Sci. USA 2022, 119, e2205370119. DOI: 10.1073/pnas.2205370119 PMID: 36067297 |
Mei, L.; Espinosa de Los Reyes, S.; Reynolds, M. J.; Leicher, R.; Liu, S.; Alushin, G. M. Molecular mechanism for direct actin force-sensing by α-catenin. eLife 2020, 9, e62514. DOI: 10.7554/eLife.62514 PMID: 32969337 | |
Sarker, M.; Lee, H. T.; Mei, L.; Krokhotin, A.; de Los Reyes, S. E.; Yen, L.; Costantini, L. M.; Griffith, J.; Dokholyan, N. V.; Alushin, G. M.; Campbell, S. L. Cardiomyopathy mutations in metavinculin disrupt regulation of vinculin-induced F-actin assemblies. J. Mol. Biol. 2019, 431, 1604–1618. DOI: 10.1016/j.jmb.2019.02.024 PMID: 30844403 | |
Miller, Linamarie | Singh, S.; Vanden Broeck, A.; Miller, L.; Chaker-Margot, M.; Klinge, S. Nucleolar maturation of the human small subunit processome. Science 2021, 373, eabj5338. DOI: 10.1126/science.abj5338 PMID: 34516797 |
Sanghai, Z. A.†; Miller, L.†; Molloy, K. R.; Barandun, J.; Hunziker, M.; Chaker-Margot, M.; Wang, J.; Chait, B. T.; Klinge, S. Modular assembly of the nucleolar pre-60S ribosomal subunit. Nature 2018, 556, 126–129. DOI: 10.1038/nature26156 PMID: 29512650 | |
Mohideen, Firaz | Armstrong, A. A.; Mohideen, F.; Lima, C. D. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 2012, 483, 59–63. DOI: 10.1038/nature10883 PMID: 22382979 |
Mohideen, F.; Capili, A. D.; Bilimoria, P. M.; Yamada, T.; Bonni, A.; Lima, C. D. A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9. Nat. Struct. Mol. Biol. 2009, 16, 945–952. DOI: 10.1038/nsmb.1648 PMID: 19684601 | |
Mohideen, F.; Lima, C. D. SUMO takes control of a ubiquitin-specific protease. Mol. Cell 2008, 30, 539–540. DOI: 10.1016/j.molcel.2008.05.010 PMID: 18538649 | |
Moilanen, Sirkka | Moilanen, S. B.; Potuzak, J. S.; Tan, D. S. Stereocontrolled synthesis of spiroketals via Ti(Oi-Pr)4-mediated kinetic spirocyclization of glycal epoxides with retention of configuration. J. Am. Chem. Soc. 2006, 128, 1792–1793. DOI: 10.1021/ja057908f PMID: 16464069 |
Potuzak, J. S.; Moilanen, S. B.; Tan, D. S. Stereocontrolled synthesis of spiroketals via a remarkable methanol-induced kinetic spirocyclization reaction. J. Am. Chem. Soc. 2005, 127, 13796–13797. DOI: 10.1021/ja055033z PMID: 16201793 | |
Moilanen, S. B.; Tan, D. S. Enantioselective synthesis of erythro-4-deoxyglycals as scaffolds for target- and diversity-oriented synthesis: new insights into glycal reactivity. Org. Biomol. Chem. 2005, 3, 798–803. DOI: 10.1039/B417429A PMID: 15731865 | |
Potuzak, J. S.; Moilanen, S. B.; Tan, D. S. Discovery and applications of small molecule probes for studying biological processes. Biotechnol. Genet. Eng. Rev. 2004, 21, 11–78. PMID: 17017027 | |
Morton, Jason | Morton, J. G.; Draghici, C.; Kwon, L. D.; Njardarson, J. T. Rapid assembly of vinigrol’s unique carbocyclic skeleton. Org. Lett. 2009, 11, 4492–4495. DOI: 10.1021/ol901519k PMID: 19728692 |
Moulick, Kamalika | Moulick, K.; Ahn, J. H.; Zong, H.; Rodina, A.; Cerchietti, L.; Gomes DaGama, E. M.; Caldas-Lopes, E.; Beebe, K.; Perna, F.; Hatzi, K.; Vu, L. P.; Zhao, X.; Zatorska, D.; Taldone, T.; Smith-Jones, P.; Alpaugh, M.; Gross, S. S.; Pillarsetty, N.; Ku, T.; Lewis, J. S.; Larson, S. M.; Levine, R.; Erdjument-Bromage, H.; Guzman, M. L.; Nimer, S. D.; Melnick, A.; Neckers, L.; Chiosis, G. Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat. Chem. Biol. 2011, 7, 818–826. DOI: 10.1038/nchembio.670 PMID: 21946277 |
Taldone, T.; Zatorska, D.; Patel, P. D.; Zong, H.; Rodina, A.; Ahn, J. H.; Moulick, K.; Guzman, M. L.; Chiosis, G. Design, synthesis, and evaluation of small molecule Hsp90 probes. Bioorg. Med. Chem. 2011, 19, 2603–2614. DOI: 10.1016/j.bmc.2011.03.013 PMID: 21459002 | |
Ahn, J. H.; Luo, W.; Kim, J.; Rodina, A.; Clement, C. C.; Aguirre, J.; Sun, W.; Kang, Y.; Maharaj, R.; Moulick, K.; Zatorska, D.; Kokoszka, M.; Brodsky, J. L.; Chiosis, G. Design of a flexible cell-based assay for the evaluation of heat shock protein 70 expression modulators. Assay Drug Dev. Technol. 2011, 9, 236–246. DOI: 10.1089/adt.2010.0327 PMID: 21133677 | |
Caldas-Lopes, E.; Cerchietti, L.; Ahn, J. H.; Clement, C. C.; Robles, A. I.; Rodina, A.; Moulick, K.; Taldone, T.; Gozman, A.; Guo, Y.; Wu, N.; de Stanchina, E.; White, J.; Gross, S. S.; Ma, Y.; Varticovski, L.; Melnick, A.; Chiosis, G. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 8368–8373. DOI: 10.1073/pnas.0903392106 PMID: 19416831 | |
Du, Y.; Moulick, K.; Rodina, A.; Aguirre, J.; Felts, S.; Dingledine, R.; Fu, H.; Chiosis, G. High-throughput screening fluorescence polarization assay for tumor-specific Hsp90. J. Biomol. Screen. 2007, 12, 915–924. DOI: 10.1177/1087057107306067 PMID: 17942784 | |
Rodina, A.; Vilenchik, M.; Moulick, K.; Aguirre, J.; Kim, J.; Chiang, A.; Litz, J.; Clement, C. C.; Kang, Y.; She, Y.; Wu, N.; Felts, S.; Wipf, P.; Massague, J.; Jiang, X.; Brodsky, J. L.; Krystal, G. W.; Chiosis, G. Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nat. Chem. Biol. 2007, 3, 498–507. DOI: 10.1038/nchembio.2007.10 PMID: 17603540 | |
Luo, W.; Dou, F.; Rodina, A.; Chip, S.; Kim, J.; Zhao, Q.; Moulick, K.; Aguirre, J.; Wu, N.; Greengard, P.; Chiosis, G. Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 9511–9516. DOI: 10.1073/pnas.0701055104 PMID: 17517623 | |
Moulick, K.; Clement, C. C.; Aguirre, J.; Kim, J.; Kang, Y.; Felts, S.; Chiosis, G. Synthesis of a red-shifted fluorescence polarization probe for Hsp90. Bioorg. Med. Chem. Lett. 2006, 16, 4515–4518. DOI: 10.1016/j.bmcl.2006.06.025 PMID: 16797988 | |
Chiosis, G.; Rodina, A.; Moulick, K. Emerging Hsp90 inhibitors: from discovery to clinic. Anticancer Agents Med. Chem. 2006, 6, 1–8. DOI: 10.2174/187152006774755492 PMID: 16475922 | |
Mulgrew-Nesbitt, Anna | Nomikos, M.; Mulgrew-Nesbitt, A.; Pallavi, P.; Mihalyne, G.; Zaitseva, I.; Swann, K.; Lai, F. A.; Murray, D.; McLaughlin, S. Binding of phosphoinositide-specific phospholipase C-ζ (PLC-ζ) to phospholipid membranes: potential role of an unstructured cluster of basic residues. J. Biol. Chem. 2007, 282, 16644–16653. DOI: 10.1074/jbc.M701072200 PMID: 17430887 |
Mulgrew-Nesbitt, A.; Diraviyam, K.; Wang, J.; Singh, S.; Murray, P.; Li, Z.; Rogers, L.; Mirkovic, N.; Murray, D. The role of electrostatics in protein–membrane interactions. Biochim. Biophys. Acta 2006, 1761, 812–826. DOI: 10.1016/j.bbalip.2006.07.002 PMID: 16928468 | |
Nambiar, Deepika | Tsamouri, L. P.; Hsiao, J. C.; Wang, Q.; Geeson, M. B.; Huang, H. C.; Nambiar, D. R.; Zou, M.; Ball, D. P.; Chui, A. J.; Bachovchin, D. A. The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation. Cell Chem. Biol. 2024, in press. DOI: 10.1016/j.chembiol.2024.06.004 PMID: 38991619 |
Nandakumar, Jayakrishnan | Nandakumar, J.; Schwer, B.; Schaffrath, R.; Shuman, S. RNA repair: an antidote to cytotoxic eukaryal RNA damage. Mol. Cell 2008, 31, 278–286. DOI: 10.1016/j.molcel.2008.05.019 PMID: 18657509 |
Nair, P. A.; Nandakumar, J.; Smith, P.; Odell, M.; Lima, C. D.; Shuman, S. Structural basis for nick recognition by a minimal pluripotent DNA ligase. Nat. Struct. Mol. Biol. 2007, 14, 770–778. DOI: 10.1038/nsmb1266 PMID: 17618295 | |
Wang, L. K.; Nandakumar, J.; Schwer, B.; Shuman, S. The C-terminal domain of T4 RNA ligase 1 confers specificity for tRNA repair. RNA 2007, 13, 1235–1244. DOI: 10.1261/rna.591807 PMID: 17585047 | |
Keppetipola, N.; Nandakumar, J.; Shuman, S. Reprogramming the tRNA-splicing activity of a bacterial RNA repair enzyme. Nucleic Acids Res. 2007, 35, 3624–3630. DOI: 10.1093/nar/gkm110 PMID: 17488852 | |
Nandakumar, J.; Nair, P. A.; Shuman, S. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate. Mol. Cell 2007, 26, 257–271. DOI: 10.1016/j.molcel.2007.02.026 PMID: 17466627 | |
Nandakumar, J.; Shuman, S.; Lima, C. D. RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward. Cell 2006, 127, 71–84. DOI: 10.1016/j.cell.2006.08.038 PMID: 17018278 | |
Zhu, H.; Nandakumar, J.; Aniukwu, J.; Wang, L. K.; Glickman, M. S.; Lima, C. D.; Shuman, S. Atomic structure and nonhomologous end-joining function of the polymerase component of bacterial DNA ligase D. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 1711–1716. DOI: 10.1073/pnas.0509083103 PMID: 16446439 | |
Nandakumar, J.; Shuman, S. Dual mechanisms whereby a broken RNA end assists the catalysis of its repair by T4 RNA ligase 2. J. Biol. Chem. 2005, 280, 23484–23489. DOI: 10.1074/jbc.M500831200 PMID: 15851476 | |
Nandakumar, J.; Shuman, S. How an RNA ligase discriminates RNA versus DNA damage. Mol. Cell 2004, 16, 211–221. DOI: 10.1016/j.molcel.2004.09.022 PMID: 15494308 | |
Nandakumar, J.; Ho, C. K.; Lima, C. D.; Shuman, S. RNA substrate specificity and structure-guided mutational analysis of bacteriophage T4 RNA ligase 2. J. Biol. Chem. 2004, 279, 31337–31347. DOI: 10.1074/jbc.M402394200 PMID: 15084599 | |
Neugroschl, Atara | Hsiao, J. C.; Neugroschl, A. R.; Chui, A. J.; Taabazuing, C. Y.; Griswold, A. R.; Wang, Q.; Huang, H. C.; Orth-He, E. L.; Ball, D. P.; Hiotis, G.; Bachovchin, D. A. A ubiquitin-independent proteasome pathway controls activation of the CARD8 inflammasome. J. Biol. Chem. 2022, 298, 102032. DOI: 10.1016/j.jbc.2022.102032 PMID: 35580636 |
Nguyen-Duc, Thinh | Nguyen-Duc, T.; Huse, M. A generalizable platform for the photoactivation of cell surface receptors. ACS Chem. Biol. 2015, 10, 2435–2440. DOI: 10.1021/acschembio.5b00372 PMID: 26295186 |
Paige, J. S.; Nguyen-Duc, T.; Song, W.; Jaffrey, S. R. Fluorescence imaging of cellular metabolites with RNA. Science 2012, 335, 1194. DOI: 10.1126/science.1218298 PMID: 22403384 | |
Nieves Escobar, Christopher | Delos Reyes, A. M. V.; Nieves Escobar, C. S.; Muñoz, A.; Huffman, M. I.; Tan, D. S. Direct conversion of amino acids to oxetanol bioisosteres via photoredox catalysis. Chem. Sci. 2023, 14, 10524–10531. DOI: 10.1039/D3SC00936J PMID: 37799988 |
O’Doherty, Inish | Hind, S. R.; Strickler, S. R.; Boyle, P. C.; Dunham, D. M.; Bao, Z.; O’Doherty, I. M.; Baccile, J. A.; Hoki, J. S.; Viox, E. G.; Clarke, C. R.; Vinatzer, B. A.; Schroeder, F. C.; Martin, G. B. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat. Plants 2016, 2, 16128. DOI: 10.1038/nplants.2016.128 PMID: 27548463 |
Manohar, M.; Tian, M.; Moreau, M.; Park, S. W.; Choi, H. W.; Fei, Z.; Friso, G.; Asif, M.; Manosalva, P.; von Dahl, C. C.; Shi, K.; Ma, S.; Dinesh-Kumar, S. P.; O’Doherty, I.; Schroeder, F. C.; van Wijk, K. J.; Klessig, D. F. Identification of multiple salicylic acid-binding proteins using two high throughput screens. Front. Plant Sci. 2014, 5, 777. DOI: 10.3389/fpls.2014.00777 PMID: 25628632 | |
Park, D.; O’Doherty, I.; Somvanshi, R. K.; Bethke, A.; Schroeder, F. C.; Kumar, U.; Riddle, D. L. Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 9917–9922. DOI: 10.1073/pnas.1202216109 PMID: 22665789 | |
O’Doherty, I.; Yim, J. J.; Schmelz, E. A.; Schroeder, F. C. Synthesis of caeliferins, elicitors of plant immune responses: accessing lipophilic natural products via cross metathesis. Org. Lett. 2011, 13, 5900–5903. DOI: 10.1021/ol202541b PMID: 21992613 | |
Orth-He, Elizabeth | Chen, Q.; Wang, A.; Covelli, D. J.; Bhattacharjee, A.; Wang, Q.; Orth-He, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Hsiao, J. C.; Bachovchin, D. A. Optimized M24B aminopeptidase inhibitors for CARD8 inflammasome activation. J. Med. Chem. 2023, 66, 2589–2607. DOI: 10.1021/acs.jmedchem.2c01535 PMID: 36724486 |
Orth-He, E. L.†; Huang, H. C.†; Rao, S. D.; Wang, Q.; Chen, Q.; O’Mara, C. M.; Chui, A. J.; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Cross, J. R.; Bachovchin, D. A. Protein folding stress potentiates NLRP1 and CARD8 inflammasome activation. Cell Rep. 2023, 42, 111965. DOI: 10.1016/j.celrep.2022.111965 PMID: 36649711 | |
Wang, Q.; Hsiao, J. C.; Yardeny, N.; Huang, H. C.; O’Mara, C. M.; Orth-He, E. L.; Ball, D. P.; Zhang, Z.; Bachovchin, D. A. The NLRP1 and CARD8 inflammasomes detect reductive stress. Cell Rep. 2023, 42, 111966. DOI: 10.1016/j.celrep.2022.111966 PMID: 36649710 | |
Hsiao, J. C.; Neugroschl, A. R.; Chui, A. J.; Taabazuing, C. Y.; Griswold, A. R.; Wang, Q.; Huang, H. C.; Orth-He, E. L.; Ball, D. P.; Hiotis, G.; Bachovchin, D. A. A ubiquitin-independent proteasome pathway controls activation of the CARD8 inflammasome. J. Biol. Chem. 2022, 298, 102032. DOI: 10.1016/j.jbc.2022.102032 PMID: 35580636 | |
Rao, S. D.†; Chen, Q.†; Wang, Q.†; Orth-He, E. L.†; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Huang, H. C.; Chui, A. J.; Covelli, D. J.; You, S.; Cross, J. R.; Bachovchin, D. A. M24B aminopeptidase inhibitors selectively activate the CARD8 inflammasome. Nat. Chem. Biol. 2022, 18, 565–574. DOI: 10.1038/s41589-021-00964-7 PMID: 35165443 | |
Robert Hollingsworth, L.; David, L.; Li, Y.; Griswold, A. R.; Ruan, J.; Sharif, H.; Fontana, P.; Orth-He, E. L.; Fu, T. M.; Bachovchin, D. A.; Wu, H. Mechanism of filament formation in UPA-promoted CARD8 and NLRP1 inflammasomes. Nat. Commun. 2021, 12, 189. DOI: 10.1038/s41467-020-20320-y PMID: 33420033 | |
Chui, A. J.; Griswold, A. R.; Taabazuing, C. Y.; Orth, E. L.; Gai, K.; Rao, S. D.; Ball, D. P.; Hsiao, J. C.; Bachovchin, D. A. Activation of the CARD8 inflammasome requires a disordered region. Cell Rep. 2020, 33, 108264. DOI: 10.1016/j.celrep.2020.108264 PMID: 33053349 | |
Johnson, D. C.; Okondo, M. C.; Orth, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Bachovchin, D. A. DPP8/9 inhibitors activate the CARD8 inflammasome in resting lymphocytes. Cell Death Dis. 2020, 11, 628. DOI: 10.1038/s41419-020-02865-4 PMID: 32796818 | |
Ball, D. P.; Taabazuing, C. Y.; Griswold, A. R.; Orth, E. L.; Rao, S. D.; Kotliar, I. B.; Vostal, L. E.; Johnson, D. C.; Bachovchin, D. A. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci. Alliance 2020, 3, e202000664. DOI: 10.26508/lsa.202000664 PMID: 32051255 | |
Chui, A. J.†; Okondo, M. C.†; Rao, S. D.†; Gai, K.; Griswold, A. R.; Johnson, D. C.; Ball, D. P.; Taabazuing, C. Y.; Orth, E. L.; Vittimberga, B. A.; Bachovchin, D. A. N-terminal degradation activates the NLRP1B inflammasome. Science 2019, 364, 82–85. DOI: 10.1126/science.aau1208 PMID: 30872531 | |
Osunsade, Adewola | Nguyen, T.; Li, S.; Chang, J. T.; Watters, J. W.; Ng, H.; Osunsade, A.; David, Y.; Liu, S. Chromatin sequesters pioneer transcription factor Sox2 from exerting force on DNA. Nat. Commun. 2022, 13, 3988. DOI: 10.1038/s41467-022-31738-x PMID: 35810158 |
Leicher, R.†; Osunsade, A.†; Chua, G. N. L.†; Faulkner, S. C.†; Latham, A. P.; Watters, J. W.; Nguyen, T.; Beckwitt, E. C.; Christodoulou-Rubalcava, S.; Young, P. G.; Zhang, B.; David, Y.; Liu, S. Single-stranded nucleic acid binding and coacervation by linker histone H1. Nat. Struct. Mol. Biol. 2022, 29, 463–471. DOI: 10.1038/s41594-022-00760-4 PMID: 35484234 | |
Yusufova, N.; Kloetgen, A.; Teater, M.; Osunsade, A.; Camarillo, J. M.; Chin, C. R.; Doane, A. S.; Venters, B. J.; Portillo-Ledesma, S.; Conway, J.; Phillip, J. M.; Elemento, O.; Scott, D. W.; Béguelin, W.; Licht, J. D.; Kelleher, N. L.; Staudt, L. M.; Skoultchi, A. I.; Keogh, M. C.; Apostolou, E.; Mason, C. E.; Imielinski, M.; Schlick, T.; David, Y.; Tsirigos, A.; Allis, C. D.; Soshnev, A. A.; Cesarman, E.; Melnick, A. M. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature 2021, 589, 299–305. DOI: 10.1038/s41586-020-3017-y PMID: 33299181 | |
Willcockson, M. A.; Healton, S. E.; Weiss, C. N.; Bartholdy, B. A.; Botbol, Y.; Mishra, L. N.; Sidhwani, D. S.; Wilson, T. J.; Pinto, H. B.; Maron, M. I.; Skalina, K. A.; Toro, L. N.; Zhao, J.; Lee, C. H.; Hou, H.; Yusufova, N.; Meydan, C.; Osunsade, A.; David, Y.; Cesarman, E.; Melnick, A. M.; Sidoli, S.; Garcia, B. A.; Edelmann, W.; Macian, F.; Skoultchi, A. I. H1 histones control the epigenetic landscape by local chromatin compaction. Nature 2021, 589, 293–298. DOI: 10.1038/s41586-020-3032-z PMID: 33299182 | |
Zheng, Q.; Osunsade, A.; David, Y. Protein arginine deiminase 4 antagonizes methylglyoxal-induced histone glycation. Nat. Commun. 2020, 11, 3241. DOI: 10.1038/s41467-020-17066-y PMID: 32591537 | |
Yusufova, N.; Teater, M. R.; Soshnev, A.; Kloetgen, A.; Osunsade, A.; Conway, J.; Doane, A.; Skoultchi, A.; Tsirigos, A.; David, Y.; Allis, C. D.; Cesarman, E.; Melnick, A. Histone 1 mutations drive lymphomagenesis by inducing primitive stem cell functions and epigenetic instructions through profound 3D re-organization of the B-cell genome. Blood 2019, 134, 23. DOI: 10.1182/blood-2019-127774 PMID: 31723979 | |
Zheng, Q.; Omans, N. D.; Leicher, R.; Osunsade, A.; Agustinus, A. S.; Finkin-Groner, E.; D’Ambrosio, H.; Liu, B.; Chandarlapaty, S.; Liu, S.; David, Y. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nat. Commun. 2019, 10, 1289. DOI: 10.1038/s41467-019-09192-z PMID: 30894531 | |
Osunsade, A.; Prescott, N. A.; Hebert, J. M.; Ray, D. M.; Jmeian, Y.; Lorenz, I. C.; David, Y. A robust method for the purification and characterization of recombinant human histone H1 variants. Biochemistry 2019, 58, 171–176. DOI: 10.1021/acs.biochem.8b01060 PMID: 30585724 | |
Pagano, Nen | Rodrik-Outmezguine, V. S.; Chandarlapaty, S.; Pagano, N. C.; Poulikakos, P. I.; Scaltriti, M.; Moskatel, E.; Baselga, J.; Guichard, S.; Rosen, N. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 2012, 1, 248–259. DOI: 10.1158/2159-8290.CD-11-0085 PMID: 22140653 |
Schatz, J. H.; Oricchio, E.; Wolfe, A. L.; Jiang, M.; Linkov, I.; Maragulia, J.; Shi, W.; Zhang, Z.; Rajasekhar, V. K.; Pagano, N. C.; Porco, J. A.; Teruya-Feldstein, J.; Rosen, N.; Zelenetz, A. D.; Pelletier, J.; Wendel, H. G. Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma. J. Exp. Med. 2011, 208, 1799–1807. DOI: 10.1084/jem.20110846 PMID: 21859846 | |
Payne, Alexander | Takaba, K.; Friedman, A. J.; Cavender, C. E.; Behara, P. K.; Pulido, I.; Henry, M. M.; MacDermott-Opeskin, H.; Iacovella, C. R.; Nagle, A. M.; Payne, A. M.; Shirts, M. R.; Mobley, D. L.; Chodera, J. D.; Wang, Y. Machine-learned molecular mechanics force fields from large-scale quantum chemical data. Chem. Sci. 2024, 15, 12861–12878. DOI: 10.1039/d4sc00690a PMID: 39148808 |
Boby, M. L.; Fearon, D; Ferla, M.; Filep, M.; Koekemoer, L.; Robinson, M. C.; COVID Moonshot Consortium; Chodera, J. D. … Payne, A. M. … Rufa, D. … Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors. Science 2023, 382, eabo7201. DOI: 10.1126/science.abo7201 PMID: 37943932 | |
Khelashvili, G.; Pillai, A. N.; Lee, J.; Pandey, K.; Payne, A. M.; Siegel, Z.; Cuendet, M. A.; Lewis, T. R.; Arshavsky, V. Y.; Broichhagen, J.; Levitz, J.; Menon, A. K. Unusual mode of dimerization of retinitis pigmentosa-associated F220C rhodopsin. Sci. Rep. 2021, 11, 10536. DOI: 10.1038/s41598-021-90039-3 PMID: 34006992 | |
Peters, Ulf | Kashyap, S.; Sandler, J.; Peters, U.; Martinez, E. J.; Kapoor, T. M. Using ‘biased-privileged’ scaffolds to identify lysine methyltransferase inhibitors. Bioorg. Med. Chem. 2014, 22, 2253–2260. DOI: 10.1016/j.bmc.2014.02.024 PMID: 24650704 |
Brennan, I. M.; Peters, U.; Kapoor, T. M.; Straight, A. F. Polo-like kinase controls vertebrate spindle elongation and cytokinesis. PLoS ONE 2007, 2, e409. DOI: 10.1371/journal.pone.0000409 PMID: 17476331 | |
Peters, U.; Cherian, J.; Kim, J. H.; Kwok, B. H.; Kapoor, T. M. Probing cell-division phenotype space and Polo-like kinase function using small molecules. Nat. Chem. Biol. 2006, 2, 618–626. DOI: 10.1038/nchembio826 PMID: 17028580 | |
Llauger, L.; He, H.; Kim, J.; Aguirre, J.; Rosen, N.; Peters, U.; Davies, P.; Chiosis, G. Evaluation of 8-arylsulfanyl, 8-arylsulfoxyl, and 8-arylsulfonyl adenine derivatives as inhibitors of the heat shock protein 90. J. Med. Chem. 2005, 48, 2892–2905. DOI: 10.1021/jm049012b PMID: 15828828 | |
Marcus, A. I.; Peters, U.; Thomas, S. L.; Garrett, S.; Zelnak, A.; Kapoor, T. M.; Giannakakou, P. Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and -sensitive cancer cells. J. Biol. Chem. 2005, 280, 11569–11577. DOI: 10.1074/jbc.M413471200 PMID: 15653676 | |
Oaksmith, J. M.; Peters, U.; Ganem, B. Three-component condensation leading to β-amino acid diamides: convergent assembly of β-peptide analogues. J. Am. Chem. Soc. 2004, 126, 13606–13607. DOI: 10.1021/ja0450152 PMID: 15493904 | |
Peters, U.; Kapoor, T. M. New probes for microtubule dynamics. Chem. Biol. 2004, 11, 14–16. DOI: 10.1016/j.chembiol.2004.01.003 PMID: 15112989 | |
Prescott, Nicholas | Feierman, E. R.; Louzon, S.; Prescott, N. A.; Biaco, T.; Gao, Q.; Qiu, Q.; Choi, K.; Palozola, K. C.; Voss, A. J.; Mehta, S. D.; Quaye, C. N.; Lynch, K. T.; Fuccillo, M. V.; Wu, H.; David, Y.; Korb, E. Histone variant H2BE enhances chromatin accessibility in neurons to promote synaptic gene expression and long-term memory. Mol. Cell 2024, 84, 2822-2837. DOI: 10.1016/j.molcel.2024.06.025 PMID: 39025074 |
Corless, B. C.; Geißen, R.; Prescott, N. A.; David, Y.; Scheinberg, D. A.; Tan, D. S. Chemoenzymatic synthesis of novel cytotoxic epoxyketones using the eponemycin biosynthetic enzyme EpnF. ACS Chem. Biol. 2023, 18, 1360–1367. DOI: 10.1021/acschembio.3c00080 PMID: 37172287 | |
Prescott, N. A.*; Huang, H. C.* Scientific fluency as the greatest strength of chemical biologists. ChemBioChem 2023, 24, e202300053. DOI: 10.1002/cbic.202300053 PMID: 36929107 | |
Pluta, R.; Aragón, E.; Prescott, N. A.; Ruiz, L.; Mees, R. A.; Baginski, B.; Flood, J. R.; Martin-Malpartida, P.; Massagué, J.; David, Y.; Macias, M. J. Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1. Nat. Commun. 2022, 13, 7279. DOI: 10.1038/s41467-022-34925-y PMID: 36435807 | |
Prescott, N. A.; David, Y. In vivo histone labeling using ultrafast trans-splicing inteins. Methods Mol. Biol. 2020, 2133, 201–219. DOI: 10.1007/978-1-0716-0434-2_10 PMID: 32144669 | |
Prescott, N. A.; Bram, Y.; Schwartz, R. E.; David, Y. Targeting hepatitis B virus covalently closed circular DNA and hepatitis B virus X protein: Recent advances and new approaches. ACS Infect. Dis. 2019, 5, 1657–1667. DOI: 10.1021/acsinfecdis.9b00249 PMID: 31525994 | |
Zheng, Q.; Prescott, N. A.; Maksimovic, I.; David, Y. (De)toxifying the epigenetic code. Chem. Res. Toxicol. 2019, 32, 796–807. DOI: 10.1021/acs.chemrestox.9b00013 PMID: 30839196 | |
Osunsade, A.; Prescott, N. A.; Hebert, J. M.; Ray, D. M.; Jmeian, Y.; Lorenz, I. C.; David, Y. A robust method for the purification and characterization of recombinant human histone H1 variants. Biochemistry 2019, 58, 171–176. DOI: 10.1021/acs.biochem.8b01060 PMID: 30585724 | |
Pisa, Rudolf | Pisa, R.; Kapoor, T. M. Chemical strategies to overcome resistance against targeted anticancer therapeutics. Nat. Chem. Biol. 2020, 16, 817–825. DOI: 10.1038/s41589-020-0596-8 PMID: 32694636 |
Pisa, R.; Phua, D. Y. Z.; Kapoor, T. M. Distinct mechanisms of resistance to a CENP-E inhibitor emerge in near-haploid and diploid cancer cells. Cell Chem. Biol. 2020, 27, 850-857.e6. DOI: 10.1016/j.chembiol.2020.05.003 PMID: 32442423 | |
Pisa, R.; Cupido, T.; Steinman, J. B.; Jones, N. H.; Kapoor, T. M. Analyzing resistance to design selective chemical inhibitors for AAA proteins. Cell Chem. Biol. 2019, 26, 1263–1273. DOI: 10.1016/j.chembiol.2019.06.001 PMID: 31257183 | |
Pisa, R.; Cupido, T.; Kapoor, T. M. Designing allele-specific inhibitors of spastin, a microtubule-severing AAA protein. J. Am. Chem. Soc. 2019, 141, 5602–5606. DOI: 10.1021/jacs.8b13257 PMID: 30875216 | |
Cupido, T.; Pisa, R.; Kelley, M. E.; Kapoor, T. M. Designing a chemical inhibitor for the AAA protein spastin using active site mutations. Nat. Chem. Biol. 2019, 15, 444–452. DOI: 10.1038/s41589-019-0225-6 PMID: 30778202 | |
Ramsey, Jared | Ramsey, J. R.; Shelton, P. M. M.; Heiss, T. K.; Olinares, P. D. B.; Vostal, L. E.; Soileau, H.; Grasso, M.; Casebeer, S. W.; Adaniya, S.; Miller, M.; Sun, S.; Huggins, D. J.; Myers, R. W.; Chait, B. T.; Vinogradova, E. V.; Kapoor, T. M. Using a function-first “scout fragment”-based approach to develop allosteric covalent inhibitors of conformationally dynamic helicase mechanoenzymes. J. Am. Chem. Soc. 2024, 146, 62–67. DOI: 10.1021/jacs.3c10581 PMID: 38134034 |
Rangaraju, Vidhya | Rangaraju, V.; Calloway, N.; Ryan, T. A. Activity-driven local ATP synthesis is required for synaptic function. Cell 2014, 156, 825–835. DOI: 10.1016/j.cell.2013.12.042 PMID: 24529383 |
Rao, Sahana | Chen, Q.; Wang, A.; Covelli, D. J.; Bhattacharjee, A.; Wang, Q.; Orth-He, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Hsiao, J. C.; Bachovchin, D. A. Optimized M24B aminopeptidase inhibitors for CARD8 inflammasome activation. J. Med. Chem. 2023, 66, 2589–2607. DOI: 10.1021/acs.jmedchem.2c01535 PMID: 36724486 |
Orth-He, E. L.†; Huang, H. C.†; Rao, S. D.; Wang, Q.; Chen, Q.; O’Mara, C. M.; Chui, A. J.; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Cross, J. R.; Bachovchin, D. A. Protein folding stress potentiates NLRP1 and CARD8 inflammasome activation. Cell Rep. 2023, 42, 111965. DOI: 10.1016/j.celrep.2022.111965 PMID: 36649711 | |
Ball, D. P.; Tsamouri, L. P.; Wang, A. E.; Huang, H. C.; Warren, C. D.; Wang, Q.; Edmondson, I. H.; Griswold, A. R.; Rao, S. D.; Johnson, D. C.; Bachovchin, D. A. Oxidized thioredoxin-1 restrains the NLRP1 inflammasome. Sci. Immunol. 2022, 7, eabm7200. DOI: 10.1126/sciimmunol.abm7200 PMID: 36332009 | |
Rao, S. D.†; Chen, Q.†; Wang, Q.†; Orth-He, E. L.†; Saoi, M.; Griswold, A. R.; Bhattacharjee, A.; Ball, D. P.; Huang, H. C.; Chui, A. J.; Covelli, D. J.; You, S.; Cross, J. R.; Bachovchin, D. A. M24B aminopeptidase inhibitors selectively activate the CARD8 inflammasome. Nat. Chem. Biol. 2022, 18, 565–574. DOI: 10.1038/s41589-021-00964-7 PMID: 35165443 | |
Chui, A. J.; Griswold, A. R.; Taabazuing, C. Y.; Orth, E. L.; Gai, K.; Rao, S. D.; Ball, D. P.; Hsiao, J. C.; Bachovchin, D. A. Activation of the CARD8 inflammasome requires a disordered region. Cell Rep. 2020, 33, 108264. DOI: 10.1016/j.celrep.2020.108264 PMID: 33053349 | |
Johnson, D. C.; Okondo, M. C.; Orth, E. L.; Rao, S. D.; Huang, H. C.; Ball, D. P.; Bachovchin, D. A. DPP8/9 inhibitors activate the CARD8 inflammasome in resting lymphocytes. Cell Death Dis. 2020, 11, 628. DOI: 10.1038/s41419-020-02865-4 PMID: 32796818 | |
Ball, D. P.; Taabazuing, C. Y.; Griswold, A. R.; Orth, E. L.; Rao, S. D.; Kotliar, I. B.; Vostal, L. E.; Johnson, D. C.; Bachovchin, D. A. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci. Alliance 2020, 3, e202000664. DOI: 10.26508/lsa.202000664 PMID: 32051255 | |
Griswold, A. R.; Ball, D. P.; Bhattacharjee, A.; Chui, A. J.; Rao, S. D.; Taabazuing, C. Y.; Bachovchin, D. A. DPP9’s enzymatic activity and not its binding to CARD8 inhibits inflammasome activation. ACS Chem. Biol. 2019, 14, 2424–2429. DOI: 10.1021/acschembio.9b00462 PMID: 31525884 | |
Gai, K.; Okondo, M. C.; Rao, S. D.; Chui, A. J.; Ball, D. P.; Johnson, D. C.; Bachovchin, D. A. DPP8/9 inhibitors are universal activators of functional NLRP1 alleles. Cell Death. Dis. 2019, 10, 587. DOI: 10.1038/s41419-019-1817-5 PMID: 31383852 | |
Griswold, A. R.; Cifani, P.; Rao, S. D.; Axelrod, A. J.; Miele, M. M.; Hendrickson, R. C.; Kentsis, A.; Bachovchin, D. A. A chemical strategy for protease substrate profiling. Cell Chem. Biol. 2019, 26, 901–907. DOI: 10.1016/j.chembiol.2019.03.007 PMID: 31006619 | |
Chui, A. J.†; Okondo, M. C.†; Rao, S. D.†; Gai, K.; Griswold, A. R.; Johnson, D. C.; Ball, D. P.; Taabazuing, C. Y.; Orth, E. L.; Vittimberga, B. A.; Bachovchin, D. A. N-terminal degradation activates the NLRP1B inflammasome. Science 2019, 364, 82–85. DOI: 10.1126/science.aau1208 PMID: 30872531 | |
Johnson, D. C.†; Taabazuing, C. Y.†; Okondo, M. C.; Chui, A. J.; Rao, S. D.; Brown, F. C.; Reed, C.; Peguero, E.; de Stanchina, E.; Kentsis, A.; Bachovchin, D. A. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 2018, 24, 1151–1156. DOI: 10.1038/s41591-018-0082-y PMID: 29967349 | |
Okondo, M. C.†; Rao, S. D.†; Taabazuing, C. Y.; Chui, A. J.; Poplawski, S. E.; Johnson, D. C.; Bachovchin, D. A. Inhibition of Dpp8/9 activates the Nlrp1b inflammasome. Cell Chem. Biol. 2018, 25, 262–267. DOI: 10.1016/j.chembiol.2017.12.013 PMID: 29396289 | |
Ghazizadeh, Z.; Kao, D. I.; Amin, S.; Cook, B.; Rao, S.; Zhou, T.; Zhang, T.; Xiang, Z.; Kenyon, R.; Kaymakcalan, O.; Liu, C.; Evans, T.; Chen, S. ROCKII inhibition promotes the maturation of human pancreatic beta-like cells. Nat. Commun. 2017, 8, 298. DOI: 10.1038/s41467-017-00129-y PMID: 28824164 | |
Rasmussen, Victoria | Mattheisen, J. M.†; Rasmussen, V. A.†; Ceraudo, E.; Kolodzinski, A.; Horioka-Duplix, M.; Sakmar, T. P.; Huber, T. Application of bioluminescence resonance energy transfer to quantitate cell-surface expression of membrane proteins. Anal. Biochem. 2024, 684, 115361. DOI: 10.1016/j.ab.2023.115361 PMID: 37865268 | Ray, Devin | Ray, D.; Flood, J.; David, Y. Harnessing split-inteins as a tool for the selective modification of surface receptors in live cells. ChemBioChem 2023, 24, e202200487. DOI: 10.1002/cbic.202200487 PMID: 36178424 |
Ray, D. M.; Jennings, E. Q.; Maksimovic, I.; Chai, X.; Galligan, J. J.; David, Y.; Zheng, Q. Chemical labeling and enrichment of histone glyoxal adducts. ACS. Chem. Biol. 2022, 17, 756–761. DOI: 10.1021/acschembio.1c00864 PMID: 35294181 | |
Maksimovic, I.; Ray, D.; Zheng, Q.; David, Y. Utilizing intein trans-splicing for in vivo generation of site-specifically modified proteins. Meth. Enzymol. 2019, 626, 203–222. DOI: 10.1016/bs.mie.2019.07.015 PMID: 31606075 | |
Osunsade, A.; Prescott, N. A.; Hebert, J. M.; Ray, D. M.; Jmeian, Y.; Lorenz, I. C.; David, Y. A robust method for the purification and characterization of recombinant human histone H1 variants. Biochemistry 2019, 58, 171–176. DOI: 10.1021/acs.biochem.8b01060 PMID: 30585724 | |
Repeta, Lucas | Ghosh, S.; Ejaz, A.; Repeta, L.; Shuman, S. Pseudomonas putida MPE, a manganese-dependent endonuclease of the binuclear metallophosphoesterase superfamily, incises single-strand DNA in two orientations to yield a mixture of 3´-PO4 and 3´-OH termini. Nucleic Acids Res 2021, 49, 1023–1032. DOI: 10.1093/nar/gkaa1214 PMID: 33367848 |
Rico, Carlos | Rico, C. A.; Berchiche, Y. A.; Horioka, M.; Peeler, J. C.; Lorenzen, E.; Tian, H.; Kazmi, M. A.; Fürstenberg, A.; Gaertner, H.; Hartley, O.; Sakmar, T. P.; Huber, T. High-affinity binding of chemokine analogs that display ligand bias at the HIV-1 coreceptor CCR5. Biophys. J. 2019, 117, 903–919. DOI: 10.1016/j.bpj.2019.07.043 PMID: 31421836 |
Lorenzen, E.; Ceraudo, E.; Berchiche, Y. A.; Rico, C. A.; Fürstenberg, A.; Sakmar, T. P.; Huber, T. G protein subtype-specific signaling bias in a series of CCR5 chemokine analogs. Sci. Signal. 2018, 11, eaao6152. DOI: 10.1126/scisignal.aao6152 PMID: 30327411 | |
Staljanssens, D.; Rico, C. A.; Park, M.; Van Camp, J.; Yu, N.; Huber, T.; Sakmar, T. P.; Smagghe, G. Development of a CCK1R-membrane nanoparticle as a fish-out tool for bioactive peptides. Peptides 2015, 68, 219–227. DOI: 10.1016/j.peptides.2014.10.015 PMID: 25451329 | |
Rosenzweig, Adam | MacIntyre, L. W.; Koirala, B.; Rosenzweig, A.; Morales-Amador, A.; Brady, S. F. Cinnamosyn, a cinnamoylated synthetic-bioinformatic natural product with cytotoxic activity. Org. Lett. 2024, 26, 4433–4437. DOI: 10.1021/acs.orglett.4c00999 PMID: 38767867 |
Rosenzweig, A.†; Spotton, K.†; Bhattacharjee, A.; Morales-Amador, A.; Brady, S. F. Identification of an optimized clinical development candidate from cilagicin, an antibiotic that evades resistance by dual polyprenyl phosphate binding. ACS Infect. Dis. 2024, 10, 1536–1544. DOI: 10.1021/acsinfecdis.4c00018 PMID: 38626307 | |
Rosenzweig, A. F.; Wang, Z.; Morales-Amador, A.; Spotton, K.; Brady, S. F. A family of antibiotics that evades resistance by binding polyprenyl phosphates. ACS Infect. Dis. 2023, 9, 2394–2400. DOI: 10.1021/acsinfecdis.3c00475 PMID: 37937847 | |
Rosenzweig, A. F.†; Burian, J.†; Brady, S. F. Present and future outlooks on environmental DNA-based methods for antibiotic discovery. Curr. Opin. Microbiol. 2023, 75, 102335. DOI: 10.1016/j.mib.2023.102335 PMID: 37327680 | |
Rufa, Dominic | Boby, M. L.; Fearon, D; Ferla, M.; Filep, M.; Koekemoer, L.; Robinson, M. C.; COVID Moonshot Consortium; Chodera, J. D. … Payne, A. M. … Rufa, D. … Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors. Science 2023, 382, eabo7201. DOI: 10.1126/science.abo7201 PMID: 37943932 |
Zhang, I.; Rufa, D. A.; Pulido, I.; Henry, M. M.; Rosen, L. E.; Hauser, K.; Singh, S.; Chodera, J. D. Identifying and overcoming the sampling challenges in relative binding free energy calculations of a model protein:protein complex. J. Chem. Theory Comput. 2023, 19, 4863–4882. DOI: 10.1021/acs.jctc.3c00333 PMID: 37450482 | |
Wang, Y.; Fass, J.; Kaminow, B.; Herr, J. E.; Rufa, D.; Zhang, I.; Pulido, I.; Henry, M.; Bruce Macdonald, H. E.; Takaba, K.; Chodera, J. D. End-to-end differentiable construction of molecular mechanics force fields. Chem. Sci. 2022, 13, 12016–12033. DOI: 10.1039/d2sc02739a PMID: 36349096 | |
Pati, A. K.; El Bakouri, O.; Jockusch, S.; Zhou, Z.; Altman, R. B.; Fitzgerald, G. A.; Asher, W. B.; Terry, D. S.; Borgia, A.; Holsey, M. D.; Batchelder, J. E.; Abeywickrama, C.; Huddle, B.; Rufa, D.; Javitch, J. A.; Ottosson, H.; Blanchard, S. C. Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 24305–24315. DOI: 10.1073/pnas.2006517117 PMID: 32913060 | |
Rundlet, Emily | Holm, M.†; Natchiar, S. K.†; Rundlet, E. J.†; Myasnikov, A. G.; Watson, Z. L.; Altman, R. B.; Wang, H. Y.; Taunton, J.; Blanchard, S. C. mRNA decoding in human is kinetically and structurally distinct from bacteria. Nature 2023, 617, 200–207. DOI: 10.1038/s41586-023-05908-w PMID: 37020024 |
Juette, M. F.†; Carelli, J. D.†; Rundlet, E. J.†; Brown, A.; Shao, S.; Ferguson, A.; Wasserman, M. R.; Holm, M.; Taunton, J.; Blanchard, S. C. Didemnin B and ternatin-4 differentially inhibit conformational changes in eEF1A required for aminoacyl-tRNA accommodation into mammalian ribosomes. eLife 2022, 11, e81608. DOI: 10.7554/eLife.81608 PMID: 36264623 | |
Nishima, W.; Girodat, D.; Holm, M.; Rundlet, E. J.; Alejo, J. L.; Fischer, K.; Blanchard, S. C.; Sanbonmatsu, K. Y. Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting. Nucleic Acids Res. 2022, 50, 8302–8320. DOI: 10.1093/nar/gkac597 PMID: 35808938 | |
Wieland, M.; Holm, M.; Rundlet, E. J.; Morici, M.; Koller, T. O.; Maviza, T. P.; Pogorevc, D.; Osterman, I. A.; Müller, R.; Blanchard, S. C.; Wilson, D. N. The cyclic octapeptide antibiotic argyrin B inhibits translation by trapping EF-G on the ribosome during translocation. Proc. Natl. Acad. Sci. USA 2022, 119, e2114214119. DOI: 10.1073/pnas.2114214119 PMID: 35500116 | |
Rundlet, E. J.; Holm, M.; Schacherl, M.; Natchiar, S. K.; Altman, R. B.; Spahn, C. M. T.; Myasnikov, A. G.; Blanchard, S. C. Structural basis of early translocation events on the ribosome. Nature 2021, 595, 741–745. DOI: 10.1038/s41586-021-03713-x PMID: 34234344 | |
Flis, J.; Holm, M.; Rundlet, E. J.; Loerke, J.; Hilal, T.; Dabrowski, M.; Bürger, J.; Mielke, T.; Blanchard, S. C.; Spahn, C. M. T.; Budkevich, T. V. tRNA translocation by the eukaryotic 80S ribosome and the impact of GTP hydrolysis. Cell Rep. 2018, 25, 2676–2688. DOI: 10.1016/j.celrep.2018.11.040 PMID: 30517857 | |
Samai, Poulami | Samai, P.; Shuman, S. Kinetic analysis of DNA strand joining by Chlorella virus DNA ligase and the role of nucleotidyltransferase motif VI in ligase adenylylation. J. Biol. Chem. 2012, 287, 28609–28618. DOI: 10.1074/jbc.M112.380428 PMID: 22745124 |
Samai, P.; Shuman, S. Structure-function analysis of the OB and latch domains of Chlorella virus DNA ligase. J. Biol. Chem. 2011, 286, 22642–22652. DOI: 10.1074/jbc.M111.245399 PMID: 21527793 | |
Samai, P.; Shuman, S. Functional dissection of the DNA interface of the nucleotidyltransferase domain of Chlorella virus DNA ligase. J. Biol. Chem. 2011, 286, 13314–13326. DOI: 10.1074/jbc.M111.226191 PMID: 21335605 | |
Samai, P.; Smith, P.; Shuman, S. Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010, 66, 1552–1556. DOI: 10.1107/S1744309110039801 PMID: 21139194 | |
Santarossa, Cristina | Santarossa, C. C.; Mickolajczyk, K. J.; Steinman, J. B.; Urnavicius, L.; Chen, N.; Hirata, Y.; Fukase, Y.; Coudray, N.; Ekiert, D. C.; Bhabha, G.; Kapoor, T. M. Targeting allostery in the Dynein motor domain with small molecule inhibitors. Cell Chem. Biol. 2021, 28, 1460-1473.e15. DOI: 10.1016/j.chembiol.2021.04.024 PMID: 34015309 |
Steinman, J. B.; Santarossa, C. C.; Miller, R. M.; Yu, L. S.; Serpinskaya, A. S.; Furukawa, H.; Morimoto, S.; Tanaka, Y.; Nishitani, M.; Asano, M.; Zalyte, R.; Ondrus, A. E.; Johnson, A. G.; Ye, F.; Nachury, M. V.; Fukase, Y.; Aso, K.; Foley, M. A.; Gelfand, V. I.; Chen, J. K.; Carter, A. P.; Kapoor, T. M. Chemical structure-guided design of dynapyrazoles, potent cell-permeable dynein inhibitors with a unique mode of action. eLife 2017, 6, e25174. DOI: 10.7554/eLife.25174 PMID: 28524820 | |
Rodina, A.; Taldone, T.; Kang, Y.; Patel, P. D.; Koren, J.; Yan, P.; DaGama Gomes, E. M.; Yang, C.; Patel, M. R.; Shrestha, L.; Ochiana, S. O.; Santarossa, C.; Maharaj, R.; Gozman, A.; Cox, M. B.; Erdjument-Bromage, H.; Hendrickson, R. C.; Cerchietti, L.; Melnick, A.; Guzman, M. L.; Chiosis, G. Affinity purification probes of potential use to investigate the endogenous Hsp70 interactome in cancer. ACS Chem. Biol. 2014, 9, 1698–1705. DOI: 10.1021/cb500256u PMID: 24934503 | |
Sanyal, Sumana | Menon, I.; Huber, T.; Sanyal, S.; Banerjee, S.; Barré, P.; Canis, S.; Warren, J. D.; Hwa, J.; Sakmar, T. P.; Menon, A. K. Opsin is a phospholipid flippase. Curr. Biol. 2011, 21, 149–153. DOI: 10.1016/j.cub.2010.12.031 PMID: 21236677 |
Sanyal, S.; Menon, A. K. Stereoselective transbilayer translocation of mannosyl phosphoryl dolichol by an endoplasmic reticulum flippase. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 11289–11294. DOI: 10.1073/pnas.1002408107 PMID: 20534553 | |
Sanyal, S.; Menon, A. K. Flipping lipids: why an’ what’s the reason for?. ACS Chem. Biol. 2009, 4, 895–909. DOI: 10.1021/cb900163d PMID: 19689162 | |
Sanyal, S.; Menon, A. K. Specific transbilayer translocation of dolichol-linked oligosaccharides by an endoplasmic reticulum flippase. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 767–772. DOI: 10.1073/pnas.0810225106 PMID: 19129492 | |
Frank, C. G.; Sanyal, S.; Rush, J. S.; Waechter, C. J.; Menon, A. K. Does Rft1 flip an N-glycan lipid precursor? Nature 2008, 454, E3–E4. DOI: 10.1038/nature07165 PMID: 18668045 | |
Sanyal, S.; Frank, C. G.; Menon, A. K. Distinct flippases translocate glycerophospholipids and oligosaccharide diphosphate dolichols across the endoplasmic reticulum. Biochemistry 2008, 47, 7937–7946. DOI: 10.1021/bi800723n PMID: 18597486 | |
Sutterwala, S. S.; Creswell, C. H.; Sanyal, S.; Menon, A. K.; Bangs, J. D. De novo sphingolipid synthesis is essential for viability, but not for transport of glycosylphosphatidylinositol-anchored proteins, in African trypanosomes. Eukaryotic Cell 2007, 6, 454–464. DOI: 10.1128/EC.00283-06 PMID: 17220466 | |
Ser, Zheng | Kwok, N.; Aretz, Z.; Takao, S.; Ser, Z.; Cifani, P.; Kentsis, A. Integrative proteogenomics using ProteomeGenerator2. J. Proteome Res. 2023, 22, 2750–2764. DOI: 10.1021/acs.jproteome.3c00005 PMID: 37418425 |
Yu, Y.; Li, S.; Ser, Z.; Sanyal, T.; Choi, K.; Wan, B.; Kuang, H.; Sali, A.; Kentsis, A.; Patel, D. J.; Zhao, X. Integrative analysis reveals unique structural and functional features of the Smc5/6 complex. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2026844118. DOI: 10.1073/pnas.2026844118 PMID: 33941673 | |
Ser, Z.; Cifani, P.; Kentsis, A. Optimized cross-linking mass spectrometry for in situ interaction proteomics. J. Proteome Res. 2019, 18, 2545–2558. DOI: 10.1021/acs.jproteome.9b00085 PMID: 31083951 | |
Shea, Christie | Schild, T.; McReynolds, M. R.; Shea, C.; Low, V.; Schaffer, B. E.; Asara, J. M.; Piskounova, E.; Dephoure, N.; Rabinowitz, J. D.; Gomes, A. P.; Blenis, J. NADK is activated by oncogenic signaling to sustain pancreatic ductal adenocarcinoma. Cell Rep. 2021, 35, 109238. DOI: 10.1016/j.celrep.2021.109238 PMID: 34133937 |
Shi, Yuan | Shi, Y.; Wilmot, J. T.; Nordstrøm, L. U.; Tan, D. S.; Gin, D. Y. Total synthesis, relay synthesis, and structural confirmation of the C18-norditerpenoid alkaloid neofinaconitine. J. Am. Chem. Soc. 2013, 135, 14313–14320. DOI: 10.1021/ja4064958 PMID: 24040959 |
Singhai, Amit | Jayant, K.; Singhai, A.; Cao, Y.; Phelps, J. B.; Lindau, M.; Holowka, D. A.; Baird, B. A.; Kan, E. C. Non-Faradaic electrochemical detection of exocytosis from mast and chromaffin cells using floating-gate MOS transistors. Sci Rep 2015, 5, 18477. DOI: 10.1038/srep18477 PMID: 26686301 |
Singhai, A.; Wakefield, D. L.; Bryant, K. L.; Hammes, S. R.; Holowka, D.; Baird, B. Spatially defined EGF receptor activation reveals an F-actin-dependent phospho-Erk signaling complex. Biophys. J. 2014, 107, 2639–2651. DOI: 10.1016/j.bpj.2014.09.048 PMID: 25468343 | |
Singla, Nikhil | Singla, N.; Erdjument-Bromage, H.; Himanen, J. P.; Muir, T. W.; Nikolov, D. B. A semisynthetic Eph receptor tyrosine kinase provides insight into ligand-induced kinase activation. Chem. Biol. 2011, 18, 361–371. DOI: 10.1016/j.chembiol.2011.01.011 PMID: 21439481 |
Singla, N.; Goldgur, Y.; Xu, K.; Paavilainen, S.; Nikolov, D. B.; Himanen, J. P. Crystal structure of the ligand-binding domain of the promiscuous EphA4 receptor reveals two distinct conformations. Biochem. Biophys. Res. Commun. 2010, 399, 555–559. DOI: 10.1016/j.bbrc.2010.07.109 PMID: 20678482 | |
Singla, N.; Himanen, J. P.; Muir, T. W.; Nikolov, D. B. Toward the semisynthesis of multidomain transmembrane receptors: modification of Eph tyrosine kinases. Protein Sci. 2008, 17, 1740–1747. DOI: 10.1110/ps.035659.108 PMID: 18628240 | |
Soileau, Heather | Ramsey, J. R.; Shelton, P. M. M.; Heiss, T. K.; Olinares, P. D. B.; Vostal, L. E.; Soileau, H.; Grasso, M.; Casebeer, S. W.; Adaniya, S.; Miller, M.; Sun, S.; Huggins, D. J.; Myers, R. W.; Chait, B. T.; Vinogradova, E. V.; Kapoor, T. M. Using a function-first “scout fragment”-based approach to develop allosteric covalent inhibitors of conformationally dynamic helicase mechanoenzymes. J. Am. Chem. Soc. 2024, 146, 62–67. DOI: 10.1021/jacs.3c10581 PMID: 38134034 |
Spotton, Kaylyn | Rosenzweig, A.†; Spotton, K.†; Bhattacharjee, A.; Morales-Amador, A.; Brady, S. F. Identification of an optimized clinical development candidate from cilagicin, an antibiotic that evades resistance by dual polyprenyl phosphate binding. ACS Infect. Dis. 2024, 10, 1536–1544. DOI: 10.1021/acsinfecdis.4c00018 PMID: 38626307 |
Rosenzweig, A. F.; Wang, Z.; Morales-Amador, A.; Spotton, K.; Brady, S. F. A family of antibiotics that evades resistance by binding polyprenyl phosphates. ACS Infect. Dis. 2023, 9, 2394–2400. DOI: 10.1021/acsinfecdis.3c00475 PMID: 37937847 | |
Stella, Gianna | Stella, G.; Marraffini, L. Type III CRISPR-Cas: Beyond the Cas10 effector complex. Trends Biochem. Sci. 2024, 49, 28–37. DOI: 10.1016/j.tibs.2023.10.006 PMID: 37949766 |
Stella, G.* Sharing failure as a graduate student. ChemBioChem 2023, 24, e202300104. DOI: 10.1002/cbic.202300104 PMID: n/a | |
Huber, T.; Goldman, O.; Epstein, A. E.; Stella, G.; Sakmar, T. P. Principles and practice for SARS-CoV-2 decontamination of N95 masks with UV-C. Biophys J 2021, 120, 2927–2942. DOI: 10.1016/j.bpj.2021.02.039 PMID: 33675766 | |
Stern, Chaya | Qiu, Y.; Smith, D. G. A.; Boothroyd, S.; Jang, H.; Hahn, D. F.; Wagner, J.; Bannan, C. C.; Gokey, T.; Lim, V. T.; Stern, C. D.; Rizzi, A.; Tjanaka, B.; Tresadern, G.; Lucas, X.; Shirts, M. R.; Gilson, M. K.; Chodera, J. D.; Bayly, C. I.; Mobley, D. L.; Wang, L. P. Development and benchmarking of Open Force Field v1.0.0-the Parsley small-molecule force field. J. Chem. Theory Comput. 2021, 17, 6262–6280. DOI: 10.1021/acs.jctc.1c00571 PMID: 34551262 |
Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao, Y.; Beauchamp, K. A.; Wang, L. P.; Simmonett, A. C.; Harrigan, M. P.; Stern, C. D.; Wiewiora, R. P.; Brooks, B. R.; Pande, V. S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017, 13, e1005659. DOI: 10.1371/journal.pcbi.1005659 PMID: 28746339 | |
Stratton, Christopher | Stratton, C. F.; Newman, D. J.; Tan, D. S. Cheminformatic comparison of approved drugs from natural product versus synthetic origins. Bioorg. Med. Chem. Lett. 2015, 25, 4802–4807. DOI: 10.1016/j.bmcl.2015.07.014 PMID: 26254944 |
Wenderski, T. A.; Stratton, C. F.; Bauer, R. A.; Kopp, F.; Tan, D. S. Principal component analysis as a tool for library design: a case study investigating natural products, brand-name drugs, natural product-like libraries, and drug-like libraries. Methods Mol. Biol. 2015, 1263, 225–242. DOI: 10.1007/978-1-4939-2269-7_18 PMID: 25618349 | |
Kopp, F.†; Stratton, C. F.†; Akella, L. B.; Tan, D. S. A diversity-oriented synthesis approach to macrocycles via oxidative ring expansion. Nat. Chem. Biol. 2012, 8, 358–365. DOI: 10.1038/nchembio.911 PMID: 22406518 († = co-first authors) | |
Strauss, Alexa | Strauss, A.; Gonzalez-Hernandez, A. J.; Lee, J.; Abreu, N.; Selvakumar, P.; Salas-Estrada, L.; Kristt, M.; Arefin, A.; Huynh, K.; Marx, D. C.; Gilliland, K.; Melancon, B. J.; Filizola, M.; Meyerson, J.; Levitz, J. Structural basis of positive allosteric modulation of metabotropic glutamate receptor activation and internalization. Nat. Commun. 2024, 15, 6498. DOI: 10.1038/s41467-024-50548-x PMID: 39090128 |
Thibado, J. K.; Tano, J. Y.; Lee, J.; Salas-Estrada, L.; Provasi, D.; Strauss, A.; Marcelo Lamim Ribeiro, J.; Xiang, G.; Broichhagen, J.; Filizola, M.; Lohse, M. J.; Levitz, J. Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors. eLife 2021, 10, e67027. DOI: 10.7554/eLife.67027 PMID: 33880992 | |
Subbotin, Roman | Hakhverdyan, Z.; Molloy, K. R.; Subbotin, R. I.; Fernandez-Martinez, J.; Chait, B. T.; Rout, M. P. Measuring in vivo protein turnover and exchange in yeast macromolecular assemblies. STAR Protoc. 2021, 2, 100800. DOI: 10.1016/j.xpro.2021.100800 PMID: 34527957 |
Hakhverdyan, Z.; Molloy, K. R.; Keegan, S.; Herricks, T.; Lepore, D. M.; Munson, M.; Subbotin, R. I.; Fenyö, D.; Aitchison, J. D.; Fernandez-Martinez, J.; Chait, B. T.; Rout, M. P. Dissecting the structural dynamics of the nuclear pore complex. Mol. Cell 2021, 81, 153-165. DOI: 10.1016/j.molcel.2020.11.032 PMID: 33333016 | |
Delgado-Benito, V.; Rosen, D. B.; Wang, Q.; Gazumyan, A.; Pai, J. A.; Oliveira, T. Y.; Sundaravinayagam, D.; Zhang, W.; Andreani, M.; Keller, L.; Kieffer-Kwon, K. R.; Pękowska, A.; Jung, S.; Driesner, M.; Subbotin, R. I.; Casellas, R.; Chait, B. T.; Nussenzweig, M. C.; Di Virgilio, M. The chromatin reader ZMYND8 regulates IgH enhancers to promote immunoglobulin class switch recombination. Mol. Cell 2018, 72, 636–649. DOI: 10.1016/j.molcel.2018.08.042 PMID: 30293785 | |
Subbotin, R. I.; Chait, B. T. A pipeline for determining protein-protein interactions and proximities in the cellular milieu. Mol. Cell Proteomics 2014, 13, 2824–2835. DOI: 10.1074/mcp.M114.041095 PMID: 25172955 | |
Chakravarty, A. K.; Subbotin, R.; Chait, B. T.; Shuman, S. RNA ligase RtcB splices 3´-phosphate and 5´-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3´)pp(5´)G intermediates. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 6072–6077. DOI: 10.1073/pnas.1201207109 PMID: 22474365 | |
Tan, Lei | Subramanian, R.; Ti, S. C.; Tan, L.; Darst, S. A.; Kapoor, T. M. Marking and measuring single microtubules by PRC1 and kinesin-4. Cell 2013, 154, 377–390. DOI: 10.1016/j.cell.2013.06.021 PMID: 23870126 |
Tan, L.; Kapoor, T. M. Examining the dynamics of chromosomal passenger complex (CPC)-dependent phosphorylation during cell division. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 16675–16680. DOI: 10.1073/pnas.1106748108 PMID: 21949386 | |
Tseng, B. S.; Tan, L.; Kapoor, T. M.; Funabiki, H. Dual detection of chromosomes and microtubules by the chromosomal passenger complex drives spindle assembly. Dev. Cell 2010, 18, 903–912. DOI: 10.1016/j.devcel.2010.05.018 PMID: 20627073 | |
Tian, He | Tian, H.; Sakmar, T. P.; Huber, T. The energetics of chromophore binding in the visual photoreceptor rhodopsin. Biophys. J. 2017, 113, 60–72. DOI: 10.1016/j.bpj.2017.05.036 PMID: 28700926 |
Tian, H.; Sakmar, T. P.; Huber, T. Measurement of slow spontaneous release of 11-cis-retinal from rhodopsin. Biophys. J. 2017, 112, 153–161. DOI: 10.1016/j.bpj.2016.12.005 PMID: 28076806 | |
Tian, H.; Sakmar, T. P.; Huber, T. A simple method for enhancing the bioorthogonality of cyclooctyne reagent. Chem. Commun. (Camb.) 2016, 52, 5451–5454. DOI: 10.1039/c6cc01321j PMID: 27009873 | |
Park, M.; Tian, H.; Naganathan, S.; Sakmar, T. P.; Huber, T. Quantitative multi-color detection strategies for bioorthogonally labeled GPCRs. Methods Mol. Biol. 2015, 1335, 67–93. DOI: 10.1007/978-1-4939-2914-6_6 PMID: 26260595 | |
Tian, H.; Sakmar, T. P.; Huber, T. Micelle-enhanced bioorthogonal labeling of genetically encoded azido groups on the lipid-embedded surface of a GPCR. ChemBioChem 2015, 16, 1314–1322. DOI: 10.1002/cbic.201500030 PMID: 25962668 | |
Naganathan, S.; Ray-Saha, S.; Park, M.; Tian, H.; Sakmar, T. P.; Huber, T. Multiplex detection of functional G protein-coupled receptors harboring site-specifically modified unnatural amino acids. Biochemistry 2015, 54, 776–786. DOI: 10.1021/bi501267x PMID: 25524496 | |
Tian, H.; Naganathan, S.; Kazmi, M. A.; Schwartz, T. W.; Sakmar, T. P.; Huber, T. Bioorthogonal fluorescent labeling of functional G-protein-coupled receptors. ChemBioChem 2014, 15, 1820–1829. DOI: 10.1002/cbic.201402193 PMID: 25045132 | |
Tian, H.; Sakmar, T. P.; Huber, T. Site-specific labeling of genetically encoded azido groups for multicolor, single-molecule fluorescence imaging of GPCRs. Methods Cell Biol. 2013, 117, 267–303. DOI: 10.1016/B978-0-12-408143-7.00015-3 PMID: 24143983 | |
Naganathan, S.; Grunbeck, A.; Tian, H.; Huber, T.; Sakmar, T. P. Genetically-encoded molecular probes to study G protein-coupled receptors. J. Vis. Exp. 2013, e50588. DOI: 10.3791/50588 PMID: 24056801 | |
Huber, T.; Naganathan, S.; Tian, H.; Ye, S.; Sakmar, T. P. Unnatural amino acid mutagenesis of GPCRs using amber codon suppression and bioorthogonal labeling. Meth. Enzymol. 2013, 520, 281–305. DOI: 10.1016/B978-0-12-391861-1.00013-7 PMID: 23332705 | |
Trotta, Adam | Trotta, A. H.* Toward a unified total synthesis of the xiamycin and oridamycin families of indolosesquiterpenes. J. Org. Chem. 2017, 82, 13500–13516. DOI: 10.1021/acs.joc.7b02623 PMID: 29171266 |
Trotta, A. H.* Total synthesis of oridamycins A and B. Org. Lett. 2015, 17, 3358–3361. DOI: 10.1021/acs.orglett.5b01629 PMID: 26069989 | |
Tsukidate, Taku | Tsukidate, T.; Hespen, C. W.; Hang, H. C. Small molecule modulators of immune pattern recognition receptors. RSC Chem. Biol. 2023, 4, 1014–1036. DOI: 10.1039/d3cb00096f PMID: 38033733 |
Griffin, M. E.†; Tsukidate, T.†; Hang, H. C. N-Arylpyrazole NOD2 agonists promote immune checkpoint inhibitor therapy. ACS Chem. Biol. 2023, 18, 1368–1377. DOI: 10.1021/acschembio.3c00085 PMID: 37172210 | |
Tsukidate, T.; Li, Q.; Hang, H. C. Nuclear receptor chemical reporter enables domain-specific analysis of ligands in mammalian cells. ACS Chem. Biol. 2020, 15, 2324–2330. DOI: 10.1021/acschembio.0c00432 PMID: 32909738 | |
Tsukidate, T.; Li, Q.; Hang, H. C. Targeted and proteome-wide analysis of metabolite-protein interactions. Curr. Opin. Chem. Biol. 2019, 54, 19–27. DOI: 10.1016/j.cbpa.2019.10.008 PMID: 31790852 | |
Vandana, J. Jeya | Chong, A. C. N.; Vandana, J. J.; Jeng, G.; Li, G.; Meng, Z.; Duan, X.; Zhang, T.; Qiu, Y.; Duran-Struuck, R.; Coker, K.; Wang, W.; Li, Y.; Min, Z.; Zuo, X.; de Silva, N.; Chen, Z.; Naji, A.; Hao, M.; Liu, C.; Chen, S. Checkpoint kinase 2 controls insulin secretion and glucose homeostasis. Nat. Chem. Biol. 2024, 20, 566–576. DOI: 10.1038/s41589-023-01466-4 PMID: 37945898 |
Xue, D.; Narisu, N.; Taylor, D. L.; Zhang, M.; Grenko, C.; Taylor, H. J.; Yan, T.; Tang, X.; Sinha, N.; Zhu, J.; Vandana, J. J.; Nok Chong, A. C.; Lee, A.; Mansell, E. C.; Swift, A. J.; Erdos, M. R.; Zhong, A.; Bonnycastle, L. L.; Zhou, T.; Chen, S.; Collins, F. S. Functional interrogation of twenty type 2 diabetes-associated genes using isogenic human embryonic stem cell-derived β-like cells. Cell Metab. 2023, 35, 1897-1914.e11. DOI: 10.1016/j.cmet.2023.09.013 PMID: 37858332 | |
Chua, G. N. L.*; Vandana, J. J.*; Hsieh, C. C.* Students’ perspective on scientific training. ChemBioChem 2023, 24, e202300054. DOI: 10.1002/cbic.202300054 PMID: 37098995 | |
Vandana, J. J.; Manrique, C.; Lacko, L. A.; Chen, S. Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation. Cell Stem Cell 2023, 30, 571–591. DOI: 10.1016/j.stem.2023.04.011 PMID: 37146581 | |
Vandana, J. J.; Lacko, L. A.; Chen, S. Expanding the precision oncology toolkit with micro-organospheres for early cancer diagnosis. Cell Stem Cell 2022, 29, 873–875. DOI: 10.1016/j.stem.2022.05.002 PMID: 35659872 | |
Tang, X.; Uhl, S.; Zhang, T.; Xue, D.; Li, B.; Vandana, J. J.; Acklin, J. A.; Bonnycastle, L. L.; Narisu, N.; Erdos, M. R.; Bram, Y.; Chandar, V.; Chong, A. C. N.; Lacko, L. A.; Min, Z.; Lim, J. K.; Borczuk, A. C.; Xiang, J.; Naji, A.; Collins, F. S.; Evans, T.; Liu, C.; tenOever, B. R.; Schwartz, R. E.; Chen, S. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab. 2021, 33, 1577-1591. DOI: 10.1016/j.cmet.2021.05.015 PMID: 34081913 | |
Vandana, J. J.; Lacko, L. A.; Chen, S. Phenotypic technologies in stem cell biology. Cell Chem. Biol. 2021, 28, 257–270. DOI: 10.1016/j.chembiol.2021.02.001 PMID: 33651977 | |
Zhang, M.†; Vandana, J. J.†; Lacko, L.; Chen, S. Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Res. 2020, 49, 102063. DOI: 10.1016/j.scr.2020.102063 PMID: 33137568 | |
VarnBuhler, Bria | VarnBuhler, B. S.; Moon, J.; Dey, S. K.; Wu, J.; Jaffrey, S. R. Detection of SARS-CoV-2 RNA using a DNA aptamer mimic of green fluorescent protein. ACS Chem. Biol. 2022, 17, 840–853. DOI: 10.1021/acschembio.1c00893 PMID: 35341244 |
Vos, Cheryl | Onwueme, K. C.; Vos, C. J.; Zurita, J.; Ferreras, J. A.; Quadri, L. E. The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog. Lipid Res. 2005, 44, 259–302. DOI: 10.1016/j.plipres.2005.07.001 PMID: 16115688 |
Onwueme, K. C.; Vos, C. J.; Zurita, J.; Soll, C. E.; Quadri, L. E. Identification of phthiodiolone ketoreductase, an enzyme required for production of mycobacterial diacyl phthiocerol virulence factors. J. Bacteriol. 2005, 187, 4760–4766. DOI: 10.1128/JB.187.14.4760-4766.2005 PMID: 15995190 | |
Vogt, Kristen | Chen, C.; Wu, Y.; Wang, S. T.; Berisha, N.; Manzari, M. T.; Vogt, K.; Gang, O.; Heller, D. A. Fragment-based drug nanoaggregation reveals drivers of self-assembly. Nat. Commun. 2023, 14, 8340. DOI: 10.1038/s41467-023-43560-0 PMID: 38097573 |
Bourne, C. M.; Wallisch, P.; Dacek, M. M.; Gardner, T. J.; Pierre, S.; Vogt, K.; Corless, B. C.; Bah, M. A.; Romero-Pichardo, J. E.; Charles, A.; Kurtz, K. G.; Tan, D. S.; Scheinberg, D. A. Host interactions with engineered T-cell micropharmacies. Cancer Immunol. Res. 2023, 11, 1253–1265. DOI: 10.1158/2326-6066.CIR-22-0879 PMID: 37379366 | |
Dacek, M. M.; Kurtz, K. G.; Wallisch, P.; Pierre, S. A.; Khayat, S.; Bourne, C. M.; Gardner, T. J.; Vogt, K. C.; Aquino, N.; Younes, A.; Scheinberg, D. A. Potentiating antibody-dependent killing of cancers with CAR T cells secreting CD47-SIRPα checkpoint blocker. Blood 2023, 141, 2003–2015. DOI: 10.1182/blood.2022016101 PMID: 36696633 | |
Gardner, T. J.; Bourne, C. M.; Dacek, M. M.; Kurtz, K.; Malviya, M.; Peraro, L.; Silberman, P. C.; Vogt, K. C.; Unti, M. J.; Brentjens, R.; Scheinberg, D. Targeted cellular micropharmacies: Cells engineered for localized drug delivery. Cancers (Basel) 2020, 12, E2175. DOI: 10.3390/cancers12082175 PMID: 32764348 | |
Vostal, Lauren | Chua, G. N. L.; Watters, J. W.; Olinares, P. D. B.; Begum, M.; Vostal, L. E.; Luo, J. A.; Chait, B. T.; Liu, S. Differential dynamics specify MeCP2 function at nucleosomes and methylated DNA. Nat. Struct. Mol. Biol. 2024, in press. DOI: 10.1038/s41594-024-01373-9 PMID: 39164525 |
Jones, N. H.; Liu, Q.; Urnavicius, L.; Dahan, N. E.; Vostal, L. E.; Kapoor, T. M. Allosteric activation of VCP, an AAA unfoldase, by small molecule mimicry. Proc. Natl. Acad. Sci. U.S.A. 2024, 121, e2316892121. DOI: 10.1073/pnas.2316892121 PMID: 38833472 | |
Ramsey, J. R.; Shelton, P. M. M.; Heiss, T. K.; Olinares, P. D. B.; Vostal, L. E.; Soileau, H.; Grasso, M.; Casebeer, S. W.; Adaniya, S.; Miller, M.; Sun, S.; Huggins, D. J.; Myers, R. W.; Chait, B. T.; Vinogradova, E. V.; Kapoor, T. M. Using a function-first “scout fragment”-based approach to develop allosteric covalent inhibitors of conformationally dynamic helicase mechanoenzymes. J. Am. Chem. Soc. 2024, 146, 62–67. DOI: 10.1021/jacs.3c10581 PMID: 38134034 | |
Vostal, L. E.; Kapoor, T. M. Fine-tuning chemical genetics to identify physiologic drug targets. Cell Chem. Biol. 2023, 30, 1331–1333. DOI: 10.1016/j.chembiol.2023.10.017 PMID: 37977127 | |
Ball, D. P.; Taabazuing, C. Y.; Griswold, A. R.; Orth, E. L.; Rao, S. D.; Kotliar, I. B.; Vostal, L. E.; Johnson, D. C.; Bachovchin, D. A. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci. Alliance 2020, 3, e202000664. DOI: 10.26508/lsa.202000664 PMID: 32051255 | |
Warner, Evelyn | Váradi, A.; Marrone, G. F.; Palmer, T. C.; Narayan, A.; Szabó, M. R.; Le Rouzic, V.; Grinnell, S. G.; Subrath, J. J.; Warner, E.; Kalra, S.; Hunkele, A.; Pagirsky, J.; Eans, S. O.; Medina, J. M.; Xu, J.; Pan, Y. X.; Borics, A.; Pasternak, G. W.; McLaughlin, J. P.; Majumdar, S. Mitragynine/corynantheidine pseudoindoxyls as opioid analgesics with mu agonism and delta antagonism, which do not recruit β-arrestin-2. J. Med. Chem. 2016, 59, 8381–8397. DOI: 10.1021/acs.jmedchem.6b00748 PMID: 27556704 |
Warren, Charles | Ball, D. P.; Tsamouri, L. P.; Wang, A. E.; Huang, H. C.; Warren, C. D.; Wang, Q.; Edmondson, I. H.; Griswold, A. R.; Rao, S. D.; Johnson, D. C.; Bachovchin, D. A. Oxidized thioredoxin-1 restrains the NLRP1 inflammasome. Sci. Immunol. 2022, 7, eabm7200. DOI: 10.1126/sciimmunol.abm7200 PMID: 36332009 |
Wiewiora, Rafal | Zimmerman, M. I.; Porter, J. R.; Ward, M. D.; Singh, S.; Vithani, N.; Meller, A.; Mallimadugula, U. L.; Kuhn, C. E.; Borowsky, J. H.; Wiewiora, R. P.; Hurley, M. F. D.; Harbison, A. M.; Fogarty, C. A.; Coffland, J. E.; Fadda, E.; Voelz, V. A.; Chodera, J. D.; Bowman, G. R. SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome. Nat. Chem. 2021, 13, 651–659. DOI: 10.1038/s41557-021-00707-0 PMID: 34031561 |
Suárez, E.†; Wiewiora, R. P.†; Wehmeyer, C.; Noé, F.; Chodera, J. D.; Zuckerman, D. M. What Markov state models can and cannot do: Correlation versus path-based observables in protein-folding models. J. Chem. Theory Comput. 2021, 17, 3119–3133. DOI: 10.1021/acs.jctc.0c01154 PMID: 33904312 | |
Garst, E. H.; Lee, H.; Das, T.; Bhattacharya, S.; Percher, A.; Wiewiora, R.; Witte, I. P.; Li, Y.; Peng, T.; Im, W.; Hang, H. C. Site-specific lipidation enhances IFITM3 membrane interactions and antiviral activity. ACS Chem. Biol. 2021, 16, 844–856. DOI: 10.1021/acschembio.1c00013 PMID: 33887136 | |
Gkeka, P.; Stoltz, G.; Barati Farimani, A.; Belkacemi, Z.; Ceriotti, M.; Chodera, J. D.; Dinner, A. R.; Ferguson, A. L.; Maillet, J. B.; Minoux, H.; Peter, C.; Pietrucci, F.; Silveira, A.; Tkatchenko, A.; Trstanova, Z.; Wiewiora, R.; Lelievre, T. Machine learning force fields and coarse-grained variables in molecular dynamics: Application to materials and biological systems. J. Chem. Theory Comput. 2020, 16, 4757–4775. DOI: 10.1021/acs.jctc.0c00355 PMID: 32559068 | |
Sang, D.; Pinglay, S.; Wiewiora, R. P.; Selvan, M. E.; Lou, H. J.; Chodera, J. D.; Turk, B. E.; Gümüş, Z. H.; Holt, L. J. Ancestral reconstruction reveals mechanisms of ERK regulatory evolution. eLife 2019, 8, e38805. DOI: 10.7554/eLife.38805 PMID: 31407663 | |
Chen, S.†; Wiewiora, R. P.†; Meng, F.; Babault, N.; Ma, A.; Yu, W.; Qian, K.; Hu, H.; Zou, H.; Wang, J.; Fan, S.; Blum, G.; Pittella-Silva, F.; Beauchamp, K. A.; Tempel, W.; Jiang, H.; Chen, K.; Skene, R. J.; Zheng, Y. G.; Brown, P. J.; Jin, J.; Luo, C.; Chodera, J. D.; Luo, M. The dynamic conformational landscape of the protein methyltransferase SETD8. eLife 2019, 8, e45403. DOI: 10.7554/eLife.45403 PMID: 31081496 | |
Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao, Y.; Beauchamp, K. A.; Wang, L. P.; Simmonett, A. C.; Harrigan, M. P.; Stern, C. D.; Wiewiora, R. P.; Brooks, B. R.; Pande, V. S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017, 13, e1005659. DOI: 10.1371/journal.pcbi.1005659 PMID: 28746339 | |
Wollowitz, Jaina | Kim, M.†; Chen, C.†; Yaari, Z.; Frederiksen, R.; Randall, E.; Wollowitz, J.; Cupo, C.; Wu, X.; Shah, J.; Worroll, D.; Lagenbacher, R. E.; Goerzen, D.; Li, Y. M.; An, H.; Wang, Y.; Heller, D. A. Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo. Nat. Chem. Biol. 2023, 19, 1448–1457. DOI: 10.1038/s41589-023-01364-9 PMID: 37322156 |
Mattheisen, J. M.; Wollowitz, J. S.; Huber, T.; Sakmar, T. P. Genetic code expansion to enable site-specific bioorthogonal labeling of functional G protein-coupled receptors in live cells. Protein Sci. 2023, 32, e4550. DOI: 10.1002/pro.4550 PMID: 36540928 | |
Won, Annie | Adams, M. M.; Damani, P.; Perl, N. R.; Won, A.; Hong, F.; Livingston, P. O.; Ragupathi, G.; Gin, D. Y. Design and synthesis of potent Quillaja saponin vaccine adjuvants. J. Am. Chem. Soc. 2010, 132, 1939–1945. DOI: 10.1021/ja9082842 PMID: 20088518 |
Gómez-Nuñez, M.; Haro, K. J.; Dao, T.; Chau, D.; Won, A.; Escobar-Alvarez, S.; Zakhaleva, V.; Korontsvit, T.; Gin, D. Y.; Scheinberg, D. A. Non-natural and photo-reactive amino acids as biochemical probes of immune function. PLoS ONE 2008, 3, e3938. DOI: 10.1371/journal.pone.0003938 PMID: 19079589 | |
Wu, You | Chen, C.; Wu, Y.; Wang, S. T.; Berisha, N.; Manzari, M. T.; Vogt, K.; Gang, O.; Heller, D. A. Fragment-based drug nanoaggregation reveals drivers of self-assembly. Nat. Commun. 2023, 14, 8340. DOI: 10.1038/s41467-023-43560-0 PMID: 38097573 |
Wurst, Jacqueline | Sharma, I.; Wurst, J. M.; Tan, D. S. Solvent-dependent divergent functions of Sc(OTf)₃ in stereoselective epoxide-opening spiroketalizations. Org. Lett. 2014, 16, 2474–2477. DOI: 10.1021/ol500853q PMID: 24742081 |
Wurst, J. M.; Verano, A. L.; Tan, D. S. Stereoselective synthesis of acortatarins A and B. Org. Lett. 2012, 14, 4442–4445. DOI: 10.1021/ol3019456 PMID: 22924668 | |
Wurst, J. M.; Liu, G.; Tan, D. S. Hydrogen-bonding catalysis and inhibition by simple solvents in the stereoselective kinetic epoxide-opening spirocyclization of glycal epoxides to form spiroketals. J. Am. Chem. Soc. 2011, 133, 7916–7925. DOI: 10.1021/ja201249c PMID: 21539313 | |
Bauer, R. A.; Wurst, J. M.; Tan, D. S. Expanding the range of ‘druggable’ targets with natural product-based libraries: an academic perspective. Curr. Opin. Chem. Biol. 2010, 14, 308–314. DOI: 10.1016/j.cbpa.2010.02.001 PMID: 20202892 | |
Liu, G.; Wurst, J. M.; Tan, D. S. Stereoselective synthesis of benzannulated spiroketals: influence of the aromatic ring on reactivity and conformation. Org. Lett. 2009, 11, 3670–3673. DOI: 10.1021/ol901437f PMID: 19634891 | |
Xiao, Yang | Knörlein, A.†; Xiao, Y.†; David, Y. Leveraging histone glycation for cancer diagnostics and therapeutics. Trends Cancer 2023, 9, 410–420. DOI: 10.1016/j.trecan.2023.01.005 PMID: 36804508 |
Yardeny, Noah | Wang, Q.; Hsiao, J. C.; Yardeny, N.; Huang, H. C.; O’Mara, C. M.; Orth-He, E. L.; Ball, D. P.; Zhang, Z.; Bachovchin, D. A. The NLRP1 and CARD8 inflammasomes detect reductive stress. Cell Rep. 2023, 42, 111966. DOI: 10.1016/j.celrep.2022.111966 PMID: 36649710 |
Yi, Lina | Yi, L.; Bozkurt, G.; Li, Q.; Lo, S.; Menon, A. K.; Wu, H. Disulfide bond formation and N-glycosylation modulate protein-protein interactions in GPI-transamidase (GPIT). Sci Rep 2017, 8, 45912. DOI: 10.1038/srep45912 PMID: 28374821 |
Lee, J. H.; Yi, L.; Li, J.; Schweitzer, K.; Borgmann, M.; Naumann, M.; Wu, H. Crystal structure and versatile functional roles of the COP9 signalosome subunit 1. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 11845–11850. DOI: 10.1073/pnas.1302418110 PMID: 23818606 | |
Yin, Qian | Yin, Q.; Tian, Y.; Kabaleeswaran, V.; Jiang, X.; Tu, D.; Eck, M. J.; Chen, Z. J.; Wu, H. Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol. Cell 2012, 46, 735–745. DOI: 10.1016/j.molcel.2012.05.029 PMID: 22705373 |
Tian, Y.; Simanshu, D. K.; Ascano, M.; Diaz-Avalos, R.; Park, A. Y.; Juranek, S. A.; Rice, W. J.; Yin, Q.; Robinson, C. V.; Tuschl, T.; Patel, D. J. Multimeric assembly and biochemical characterization of the Trax-translin endonuclease complex. Nat. Struct. Mol. Biol. 2011, 18, 658–664. DOI: 10.1038/nsmb.2069 PMID: 21552261 | |
Wu, H.; Lo, Y. C.; Yin, Q. Structural studies of NEMO and TRAF6: implications in NF-κB activation. Adv. Exp. Med. Biol. 2010, 691, 89–91. DOI: 10.1007/978-1-4419-6612-4_9 PMID: 21153312 | |
Zheng, C.; Yin, Q.; Wu, H. Structural studies of NF-κB signaling. Cell Res. 2011, 21, 183–195. DOI: 10.1038/cr.2010.171 PMID: 21135870 | |
Wang, L.; Yang, J. K.; Kabaleeswaran, V.; Rice, A. J.; Cruz, A. C.; Park, A. Y.; Yin, Q.; Damko, E.; Jang, S. B.; Raunser, S.; Robinson, C. V.; Siegel, R. M.; Walz, T.; Wu, H. The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat. Struct. Mol. Biol. 2010, 17, 1324–1329. DOI: 10.1038/nsmb.1920 PMID: 20935634 | |
Yin, Q.; Lamothe, B.; Darnay, B. G.; Wu, H. Structural basis for the lack of E2 interaction in the RING domain of TRAF2. Biochemistry 2009, 48, 10558–10567. DOI: 10.1021/bi901462e PMID: 19810754 | |
Yin, Q.; Lin, S. C.; Lamothe, B.; Lu, M.; Lo, Y. C.; Hura, G.; Zheng, L.; Rich, R. L.; Campos, A. D.; Myszka, D. G.; Lenardo, M. J.; Darnay, B. G.; Wu, H. E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol. 2009, 16, 658–666. DOI: 10.1038/nsmb.1605 PMID: 19465916 | |
Pan, W.; da Graca, L. S.; Shao, Y.; Yin, Q.; Wu, H.; Jiang, X. PHAPI/pp32 suppresses tumorigenesis by stimulating apoptosis. J. Biol. Chem. 2009, 284, 6946–6954. DOI: 10.1074/jbc.M805801200 PMID: 19121999 | |
Gao, Z.; Tian, Y.; Wang, J.; Yin, Q.; Wu, H.; Li, Y. M.; Jiang, X. A dimeric Smac/diablo peptide directly relieves caspase-3 inhibition by XIAP. Dynamic and cooperative regulation of XIAP by Smac/Diablo. J. Biol. Chem. 2007, 282, 30718–30727. DOI: 10.1074/jbc.M705258200 PMID: 17724022 | |
Chung, J. Y.; Lu, M.; Yin, Q.; Lin, S. C.; Wu, H. Molecular basis for the unique specificity of TRAF6. Adv. Exp. Med. Biol. 2007, 597, 122–130. DOI: 10.1007/978-0-387-70630-6_10 PMID: 17633022 | |
Chung, J. Y.; Lu, M.; Yin, Q.; Wu, H. Structural revelations of TRAF2 function in TNF receptor signaling pathway. Adv. Exp. Med. Biol. 2007, 597, 93–113. DOI: 10.1007/978-0-387-70630-6_8 PMID: 17633020 | |
Yin, Q.; Park, H. H.; Chung, J. Y.; Lin, S. C.; Lo, Y. C.; da Graca, L. S.; Jiang, X.; Wu, H. Caspase-9 holoenzyme is a specific and optimal procaspase-3 processing machine. Mol. Cell 2006, 22, 259–268. DOI: 10.1016/j.molcel.2006.03.030 PMID: 16630893 | |
Yuan, Xiaoqiu | Wu, X.; Spence, J. S.; Das, T.; Yuan, X.; Chen, C.; Zhang, Y.; Li, Y.; Sun, Y.; Chandran, K.; Hang, H. C.; Peng, T. Site-specific photo-crosslinking proteomics reveal regulation of IFITM3 trafficking and turnover by VCP/p97 ATPase. Cell Chem. Biol. 2020, 27, 571-585.e6. DOI: 10.1016/j.chembiol.2020.03.004 PMID: 32243810 |
Percher, A.; Ramakrishnan, S.; Thinon, E.; Yuan, X.; Yount, J. S.; Hang, H. C. Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 4302–4307. DOI: 10.1073/pnas.1602244113 PMID: 27044110 | |
Peng, T.; Yuan, X.; Hang, H. C. Turning the spotlight on protein-lipid interactions in cells. Curr. Opin. Chem. Biol. 2014, 21, 144–153. DOI: 10.1016/j.cbpa.2014.07.015 PMID: 25129056 | |
Zhang, Tiffany | Scott, K. A.†; Zhang, T. L.†; Xi, S. Y.†; Ngo, B.; Vinogradova, E. V. Protein state-dependent chemical biology. Isr. J. Chem 2023, 63, e202200101. DOI: 10.1002/ijch.202200101 PMID: n/a |
Zhang, Yuxi | Zhang, Y.; Tao, X.; MacKinnon, R. Correlation between structure and function in phosphatidylinositol lipid-dependent Kir2.2 gating. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2114046119. DOI: 10.1073/pnas.2114046119 PMID: 35286194 |
Zheng, Qinsi | Zheng, Q.; Jockusch, S.; Zhou, Z.; Altman, R. B.; Zhao, H.; Asher, W.; Holsey, M.; Mathiasen, S.; Geggier, P.; Javitch, J. A.; Blanchard, S. C. Electronic tuning of self-healing fluorophores for live-cell and single-molecule imaging. Chem Sci 2017, 8, 755–762. DOI: 10.1039/C6SC02976K PMID: 28377799 |
Zheng, Q.; Jockusch, S.; Rodríguez-Calero, G. G.; Zhou, Z.; Zhao, H.; Altman, R. B.; Abruña, H. D.; Blanchard, S. C. Intra-molecular triplet energy transfer is a general approach to improve organic fluorophore photostability. Photochem. Photobiol. Sci. 2016, 15, 196–203. DOI: 10.1039/c5pp00400d PMID: 26700693 | |
Juette, M. F.; Terry, D. S.; Wasserman, M. R.; Zhou, Z.; Altman, R. B.; Zheng, Q.; Blanchard, S. C. The bright future of single-molecule fluorescence imaging. Curr. Opin. Chem. Biol. 2014, 20, 103–111. DOI: 10.1016/j.cbpa.2014.05.010 PMID: 24956235 | |
Zheng, Q.; Jockusch, S.; Zhou, Z.; Blanchard, S. C. The contribution of reactive oxygen species to the photobleaching of organic fluorophores. Photochem. Photobiol. 2014, 90, 448–454. DOI: 10.1111/php.12204 PMID: 24188468 | |
Zheng, Q.; Juette, M. F.; Jockusch, S.; Wasserman, M. R.; Zhou, Z.; Altman, R. B.; Blanchard, S. C. Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev. 2014, 43, 1044–1056. DOI: 10.1039/c3cs60237k PMID: 24177677 | |
Zheng, Q. and Blanchard, S.C. Single Fluorophore Photobleaching. In Encyclopedia of Biophysics, Roberts, G., Ed. Springer: Berlin, 2013; pp. 2324–2326. WWW: link | |
Zheng, Q. and Blanchard, S.C. Single Fluorophore Blinking. In Encyclopedia of Biophysics, Roberts, G., Ed. Springer: Berlin, 2013; pp. 2322–2323. WWW: link | |
Zheng, Q.; Jockusch, S.; Zhou, Z.; Altman, R. B.; Warren, J. D.; Turro, N. J.; Blanchard, S. C. On the mechanisms of cyanine fluorophore photostabilization. J. Phys. Chem. Lett. 2012, 3, 2200–2203. DOI: 10.1021/jz300670p PMID: 22984636 | |
Altman, R. B.; Zheng, Q.; Zhou, Z.; Terry, D. S.; Warren, J. D.; Blanchard, S. C. Enhanced photostability of cyanine fluorophores across the visible spectrum. Nat. Methods 2012, 9, 428–429. DOI: 10.1038/nmeth.1988 PMID: 22543373 | |
Altman, R. B.; Terry, D. S.; Zhou, Z.; Zheng, Q.; Geggier, P.; Kolster, R. A.; Zhao, Y.; Javitch, J. A.; Warren, J. D.; Blanchard, S. C. Cyanine fluorophore derivatives with enhanced photostability. Nat. Methods 2011, 9, 68–71. DOI: 10.1038/nmeth.1774 PMID: 22081126 | |
Wu, X.; Shen, Q. T.; Oristian, D. S.; Lu, C. P.; Zheng, Q.; Wang, H. W.; Fuchs, E. Skin stem cells orchestrate directional migration by regulating microtubule-ACF7 connections through GSK3β. Cell 2011, 144, 341–352. DOI: 10.1016/j.cell.2010.12.033 PMID: 21295697 | |
Zinder, John | Das, M.; Zattas, D.; Zinder, J. C.; Wasmuth, E. V.; Henri, J.; Lima, C. D. Substrate discrimination and quality control require each catalytic activity of TRAMP and the nuclear RNA exosome. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2024846118. DOI: 10.1073/pnas.2024846118 PMID: 33782132 |
Zinder, J. C.; Lima, C. D. Reconstitution of S. cerevisiae RNA exosome complexes using recombinantly expressed proteins. Methods Mol. Biol. 2020, 2062, 427–448. DOI: 10.1007/978-1-4939-9822-7_21 PMID: 31768989 | |
Weick, E. M.; Zinder, J. C.; Lima, C. D. Strategies for generating RNA exosome complexes from recombinant expression hosts. Methods Mol. Biol. 2020, 2062, 417–425. DOI: 10.1007/978-1-4939-9822-7_20 PMID: 31768988 | |
Weick, E. M.; Puno, M. R.; Januszyk, K.; Zinder, J. C.; DiMattia, M. A.; Lima, C. D. Helicase-dependent RNA decay illuminated by a cryo-EM structure of a human nuclear RNA exosome-MTR4 complex. Cell 2018, 173, 1663–1677. DOI: 10.1016/j.cell.2018.05.041 PMID: 29906447 | |
Wasmuth, E. V.; Zinder, J. C.; Zattas, D.; Das, M.; Lima, C. D. Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase. eLife 2017, 6, e29062. DOI: 10.7554/eLife.29062 PMID: 28742025 | |
Zinder, J. C.; Lima, C. D. Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev. 2017, 31, 88–100. DOI: 10.1101/gad.294769.116 PMID: 28202538 | |
Zinder, J. C.; Wasmuth, E. V.; Lima, C. D. Nuclear RNA exosome at 3.1 Å reveals substrate specificities, RNA paths, and allosteric inhibition of Rrp44/Dis3. Mol. Cell 2016, 64, 734–745. DOI: 10.1016/j.molcel.2016.09.038 PMID: 27818140 | |
Wasserman, M. R.; Pulk, A.; Zhou, Z.; Altman, R. B.; Zinder, J. C.; Green, K. D.; Garneau-Tsodikova, S.; Doudna Cate, J. H.; Blanchard, S. C. Chemically related 4,5-linked aminoglycoside antibiotics drive subunit rotation in opposite directions. Nat. Commun. 2015, 6, 7896. DOI: 10.1038/ncomms8896 PMID: 26224058 | |
Zoltowski, Brian | Levy, C.; Zoltowski, B. D.; Jones, A. R.; Vaidya, A. T.; Top, D.; Widom, J.; Young, M. W.; Scrutton, N. S.; Crane, B. R.; Leys, D. Updated structure of Drosophila cryptochrome. Nature 2013, 495, E3–E4. DOI: 10.1038/nature11995 PMID: 23518567 |
Zoltowski, B. D.; Vaidya, A. T.; Top, D.; Widom, J.; Young, M. W.; Crane, B. R. Structure of full-length Drosophila cryptochrome. Nature 2011, 480, 396–399. DOI: 10.1038/nature10618 PMID: 22080955 | |
Zoltowski, B. D.; Vaccaro, B.; Crane, B. R. Mechanism-based tuning of a LOV domain photoreceptor. Nat. Chem. Biol. 2009, 5, 827–834. DOI: 10.1038/nchembio.210 PMID: 19718042 | |
Lamb, J. S.; Zoltowski, B. D.; Pabit, S. A.; Li, L.; Crane, B. R.; Pollack, L. Illuminating solution responses of a LOV domain protein with photocoupled small-angle X-ray scattering. J. Mol. Biol. 2009, 393, 909–919. DOI: 10.1016/j.jmb.2009.08.045 PMID: 19712683 | |
Lamb, J. S.; Zoltowski, B. D.; Pabit, S. A.; Crane, B. R.; Pollack, L. Time-resolved dimerization of a PAS-LOV protein measured with photocoupled small angle X-ray scattering. J. Am. Chem. Soc. 2008, 130, 12226–12227. DOI: 10.1021/ja804236f PMID: 18715002 | |
Zoltowski, B. D.; Crane, B. R. Light activation of the LOV protein vivid generates a rapidly exchanging dimer. Biochemistry 2008, 47, 7012–7019. DOI: 10.1021/bi8007017 PMID: 18553928 | |
Zoltowski, B. D.; Schwerdtfeger, C.; Widom, J.; Loros, J. J.; Bilwes, A. M.; Dunlap, J. C.; Crane, B. R. Conformational switching in the fungal light sensor Vivid. Science 2007, 316, 1054–1057. DOI: 10.1126/science.1137128 PMID: 17510367 |
†Denotes co-first authors; *Denotes corresponding author.